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Abstract

This thesis tackles different problems related to the connection between geometric
and Hodge theoretic aspects of algebraic varieties.

One of the main results, joint with Stefan Schreieder and Remy van Dobben de Bruyn,
concerns the construction problem for Hodge numbers. We realize all Hodge diamonds
in Z/m for arbitrary m ≥ 2 by smooth complex projective varieties. This results in
a full answer to a question by Kollár about universal polynomial relations between
Hodge numbers. Then we investigate the case of positive characteristic, where Hodge
symmetry may fail. In this setting, we are able to realize even all asymmetric
Hodge diamonds in Z/m. Therefore, we completely understand polynomial relations
between Hodge numbers in arbitrary characteristic.

Another main result of this thesis solves the first instances of a conjecture by Griffiths
and Harris from 1985 about the degree of curves on very general hypersurfaces.
Specifically, a very general complex hypersurface in P4 of degree d ≥ 6 is conjectured
to contain only curves of degree divisible by d. Based on a degeneration technique
developed by Kollár in 1991, we prove this conjecture and its higher-dimensional
generalizations for infinitely many values of d. The conjecture by Griffiths and Harris
was not known for any d previously. Using the link between this problem and the
failure of the integral Hodge conjecture, our result shows that the cokernel of the
cycle class map is precisely Z/d for these hypersurfaces.

In the last part of the thesis, we consider another counterexample to the integral
Hodge conjecture, namely the first unirational fourfold with a non-algebraic Hodge
class, recently found by Stefan Schreieder. We construct a smooth resolution of
Schreieder’s conic bundle and study a certain unramified cohomology class on it
through a geometric description of the norm residue map in Borel–Moore homology.
Our explicit approach allows to get a better understanding of this example and might
help to decide in the future whether the constructed non-algebraic class is torsion.
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1. Introduction

With the exception of chapter 5, the present thesis is based on the publications
[PS19] (see chapter 2), [vDdBP20] (see chapter 3), and [Pau22] (see chapter 4). The
individual chapters can be read independently, but all results follow a main theme:
The relation between certain geometrical/algebraic and topological/Hodge theoretic
aspects of algebraic varieties.

The geometry of an algebraic variety X includes for example the study of its algebraic
subvarieties. By considering formal Z-linear sums of these subvarieties up to rational
equivalence, one obtains the Chow groups CH•(X). These groups may be regarded
as an algebraic version of cohomology, but are quite hard to understand and in
general not finitely generated.

An important tool to understand the topology of X are the cohomology groups
H•(X, A) of the underlying analytic space, for example with coefficients A = Z. If
X is a smooth projective C-variety, Hodge theory allows to decompose Hk(X,C) =
Hk(X,Z) ⊗Z C into finer invariants, the Hodge groups Hp,q(X). These C-linear
subspaces of Hk(X,C) are not purely topological, but also depend on the structure
of X as a compact Kähler manifold.

In chapters 2 and 3, we contribute to the classification of possible Hodge diamonds.
This was joint work with Stefan Schreieder in characteristic zero and with Remy
van Dobben de Bruyn in positive characteristic. We construct smooth projective
varieties in any dimension whose Hodge numbers have arbitrary residues modulo an
arbitrary non-zero integer. The residues need to satisfy only the usual restrictions
coming from Serre duality and Hodge symmetry. The latter restriction can even be
dropped in positive characteristic, so we obtain the strongest possible results in all
characteristics.

While the contents of chapters 2 and 3 seem to deal mainly with Hodge theoretic
aspects of algebraic varieties, connections to their geometry play a role as well.
For example, we prove that there are no unexpected polynomial expressions in the
Hodge numbers that are birational invariants. The study of algebraic varieties up to
birational equivalence is an inherently geometrical topic. In our proofs, the existence
of certain algebraic subvarieties will be crucial to perform blow-up constructions.
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In chapter 4, we prove the first instances of a conjecture of Griffiths and Harris.
If X ⊂ P4 denotes a very general complex hypersurface of degree d ≥ 6, they
conjectured in [GH85] that the degree of every curve C ⊂ X is divisible by d. This
simple sounding question remained open for every single d so far. However, Kollár
made significant progress on this problem in [K+91] using degeneration arguments.
By carefully combining different approaches in [K+91] through another degeneration,
we are able to prove the conjecture for d = 5005 and infinitely many further values
of d. Moreover, we are able to generalize this result to arbitrary dimensions — of
the hypersurface X as well as of the considered subvarieties C ⊂ X.

The conjecture of Griffiths and Harris is strongly linked to the extent by which the
integral Hodge conjecture on the hypersurface X ⊂ P4 fails. The integral Hodge
conjecture, which after Atiyah’s and Hirzebruch’s counterexample [AH61] can be seen
rather as a property of a smooth projective C-variety than as a conjecture, concerns
the surjectivity of the cycle class map in a given codimension. This map is a central
object in the connection between algebraic and Hodge theoretic aspects of smooth
projective varieties over C. It turns out that the conjecture of Griffiths and Harris in
degree d is equivalent to the cycle class map in codimension 2 having cokernel Z/d.
This is the largest theoretically possible cokernel for a smooth hypersurface X ⊂ P4,
so the aforementioned result proves that the integral Hodge conjecture fails as much
as possible for d = 5005 and infinitely many further degrees d.

It already followed from Kollár’s work [K+91] that the integral Hodge conjecture
for hypersurfaces in P4 fails in general, and this was in fact the first example where
the obstruction to the integral Hodge conjecture did not arise from a torsion class.
During the last years, many new counterexamples to the integral Hodge conjecture
have been found that satisfy additional properties. For example, Schreieder [Sch19]
constructed a unirational fourfold with a non-algebraic integral Hodge class. This is
particularly interesting because Voisin [Voi06] proved the integral Hodge conjecture
for uniruled (and thus for unirational) threefolds.

In chapter 5, we take a closer look at Schreider’s 4-dimensional counterexample. By
interpreting unramified cohomology classes in terms of Borel–Moore homology, we
obtain a new geometric description of his example. In particular, we are able to
describe the algebraic multiple of Schreieder’s non-algebraic Hodge class explicitly.
Our approach is aimed towards deciding whether the non-algebraic integral Hodge
class in his example is actually a torsion class in cohomology. This remains an open
question.

8



1.1. Constructing varieties with prescribed Hodge numbers

Let X be a smooth projective variety over C. In particular, X is a compact Kähler
manifold. Therefore, Hodge theory provides a decomposition of the k-th Betti
cohomology of X into its (p, q)-pieces for all 0 ≤ k ≤ 2n:

Hk(X,C) =
⊕

p+q=k
0≤p,q≤n

Hp,q(X) , Hp,q(X) = Hq,p(X) .

The C-linear subspaces Hp,q(X) of Hk(X,C) are generated by forms of type (p, q) in
de Rham cohomology. They are naturally isomorphic to the Dolbeault cohomology
groups Hq(X, Ωp

X).

The dimensions hp,q(X) := dimC Hp,q(X) are called Hodge numbers and are important
numerical invariants of X. While the Betti numbers bk(X) = dimC Hk(X,C) =∑

p+q=k hp,q(X) are purely topological invariants, the Hodge numbers hp,q(X) also
encode information which depends on the structure of X as a complex manifold. For
example, h1,1(X) = 1 would tell us that Pic X ∼= Z (up to torsion), and hp,0(X) ̸= 0
would indicate the presence of non-zero global holomorphic p-forms.

It is convenient to arrange the Hodge numbers of X in the following way:

hn,n

hn,n−1 hn−1,n

. .
. ...

. . .

hn,1 h1,n

hn,0 hn−1,1 · · · h1,n−1 h0,n

hn−1,0 h0,n−1

. . .
... . .

.

h1,0 h0,1

h0,0

This collection of numbers is called the Hodge diamond of X.

Since Hq,p(X) is the complex conjugate of Hp,q(X) (viewed as C-linear subspaces of
Hp+q(X,C) = Hp+q(X,R) ⊗R C), we have hp,q(X) = hq,p(X) for all p, q. In other
words, the Hodge diamond is symmetric with respect to the central vertical axis. An
interesting consequence of this symmetry is that the Betti number bk(X) must be
even if k is odd. This is an example how Hodge theory influences the topology of
algebraic varieties.
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Serre duality implies

Hn−p,n−q(X) = Hn−q(X, Ωn−p
X ) ∼= Hq(X, Ωp

X)∗ = Hp,q(X)∗

and thus hp,q(X) = hn−p,n−q(X) for all p, q. Therefore, the Hodge diamond is
invariant under rotation by 180◦.

Combining the two symmetries, we see that the Hodge diamond is symmetric
with respect to the central horizontal axis. Alternatively, hp,q(X) = hn−q,n−p(X)
can be directly deduced from the hard Lefschetz theorem, which states that the
(n − p − q)-fold cup product with the Kähler class in H1,1(X) yields an isomorphism
Hp,q(X) ∼= Hn−q,n−p(X) for all p + q < n.

Since this isomorphism factors through Hp+1,q+1(X), it follows that hp,q(X) ≤
hp+1,q+1(X) for all p + q < n. Finally, since X is connected, we have h0,0(X) = 1.

To summarize, the Hodge numbers of X are subject to the following conditions:

(1) h0,0(X) = 1 (connectedness)
(2) hp,q(X) = hn−p,n−q(X) for all 0 ≤ p, q ≤ n (Serre duality)
(3) hp,q(X) = hq,p(X) for all 0 ≤ p, q ≤ n (Hodge symmetry)
(4) hp,q(X) ≤ hp+1,q+1(X) for all p + q < n (Lefschetz inequality)

A natural question is whether these restrictions suffice to describe the set of all
Hodge diamonds of smooth projective C-varieties. This question is equivalent to the
following construction problem:

Question 1.1. Let (hp,q)0≤p,q≤n be a collection of non-negative integers satisfying
the above four conditions. Does there exist a smooth projective C-variety X such that
hp,q(X) = hp,q for all 0 ≤ p, q ≤ n?

If this question in its entirety turns out to have a negative answer, one is interested
more generally in the classification of all possible Hodge diamonds that can occur
among smooth projective C-varieties.

A related open problem is how the behaviour of smooth projective varieties regarding
this question differs from the behaviour of arbitrary compact Kähler manifolds. As
Simpson points out in his survey [Sim04], very little is known about these types of
problems.

So far, the most complete classification results have been obtained in dimensions
2 and 3, see e g. [Hun89]. For a surface X, the question about its possible Hodge
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diamonds essentially reduces to understanding three independent invariants, such as
the Chern numbers

c2
1(X) = 10 − 8h1,0(X) + 10h2,0(X) − h1,1(X)

c2(X) = 2 − 4h1,0(X) + 2h2,0(X) + h1,1(X)

together with the first Betti number b1(X) = 2 · h1,0(X).

In arbitrary dimension, Schreieder [Sch15] made significant progress on Question 1.1.
For example, he proves that Question 1.1 has a positive answer if we only consider
the Hodge numbers hp,q(X) with p, q, p − q ≠ 0 and p, q, p + q ̸= n. Moreover, the
Hodge numbers in row k can be almost arbitrary (the only exception is possibly
hk/2,k/2(X)) for a fixed dimension n and a fixed index k ∈ {0, . . . , 2n}. In particular,
the Hodge numbers closer to the center can be much smaller than the ones farther
away from the center in a given row. This is surprising because many common
examples (such as complete intersections or abelian varieties) do not exhibit this
behaviour.

Now let us focus on results concerning the entire Hodge diamond, without ignoring
any Hodge numbers. Kotschick and Schreieder [KS13] proved that Serre duality and
Hodge symmetry generate all linear relations among the Hodge numbers of smooth
projective C-varieties of a fixed dimension. Motivated by this result, Kollár raised
the question whether this remains true if one allows arbitrary polynomial expressions
in the Hodge numbers.

In chapter 2, we answer Kollár’s question. In fact, we prove a much stronger result
which completely solves the construction problem for Hodge numbers modulo an
arbitrary integer m:

Theorem 1.2. Let m ≥ 2 be an integer. For any integer n ≥ 1 and any collection of
integers (hp,q)0≤p,q≤n such that h0,0 = 1 and hp,q = hq,p = hn−p,n−q for 0 ≤ p, q ≤ n,
there exists a smooth projective C-variety X of dimension n such that

hp,q(X) ≡ hp,q (mod m)

for all 0 ≤ p, q ≤ n.

It is not hard to see that this prohibits the existence of any universal polynomial
relation among the Hodge numbers, except for the relations induced by Serre duality
and Hodge symmetry. Furthermore, Theorem 1.2 answers Question 1.1 from a
number theoretic point of view. Since this is the strongest possible result when
considering Hodge numbers modulo m, we also see that the behaviour inside the
strictly larger class of compact Kähler manifolds does not change in this case.
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Unfortunately, without the “modulo m” part, one cannot expect such a nice answer
as in Theorem 1.2 anymore. As Schreieder [Sch15] points out, more complicated
inequalities than the Lefschetz inequality may restrict the possible Hodge diamonds.
For example, h1,1(X) = 1 and h2,0(X) ≥ 1 together imply h2,1(X) < 126 · h3,0(X)
in dimension 3, see [Sch15, Proposition 28]. This gives a glimpse of the hopeless
complexity in classifying all possible Hodge diamonds.

It is well known that the outer Hodge numbers, i. e. hp,q(X) with p ∈ {0, n} or
q ∈ {0, n}, are birational invariants. Kotschick and Schreieder [KS13, Theorem 2]
proved that the only linear expressions in the Hodge numbers that are birational
invariants are those consisting solely of the outer Hodge numbers. The generalization
to polynomial birational invariants is implied by the following result from chapter 2:

Theorem 1.3. Let m ≥ 2 be an integer and let X be a smooth projective C-
variety of dimension n. For any collection of integers (hp,q)1≤p,q≤n−1 such that
hp,q = hq,p = hn−p,n−q for 0 ≤ p, q ≤ n, there exists a smooth projective C-variety X̃

birational to X such that

hp,q(X̃) ≡ hp,q (mod m)

for all 1 ≤ p, q ≤ n − 1.

This already indicates our strategy for proving Theorem 1.2. First, we get the
outer Hodge numbers correct modulo m, and afterwards we adjust the inner Hodge
numbers, i. e. all remaining Hodge numbers, by birational transformations. For this,
we use a sequence of blow-ups along smooth subvarieties.

Over a field k of positive characteristic, we can still define the Hodge numbers
of a smooth projective k-variety X to be hp,q(X) := dimk Hq(X, Ωp

X). Since our
constructions are purely algebraic, Theorem 1.2 is still true in positive characteristic.
However, one could expect an even stronger statement to be true now. This is
because Hodge symmetry turns out to be wrong in positive characteristic. The first
incarnation of this fact was found by Serre [Ser58], who constructed a surface S over
Fp satisfying h1,0(S) = 0 and h0,1(S) = 1.

Using Serre’s surface S, van Dobben de Bruyn [vDdB21] proved an analogue in
positive characteristic of the result from [KS13] about linear relations among Hodge
numbers. Interestingly, Serre duality alone (without Hodge symmetry) already
generates all linear relations between Hodge numbers in positive characteristic.

Regarding the construction problem modulo m, the strongest possible result in
positive characteristic one might hope for is the following:
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Theorem 1.4. Let k be an algebraically closed field of positive characteristic, and
let m ≥ 2 be an integer. For any integer n ≥ 1 and any collection of integers
(hp,q)0≤p,q≤n such that h0,0 = 1 and hp,q = hn−p,n−q for 0 ≤ p, q ≤ n, there exists a
smooth projective k-variety X of dimension n such that

hp,q(X) ≡ hp,q (mod m)

for all 0 ≤ p, q ≤ n.

In chapter 3, we will prove this theorem. The general structure of the argument is
similar to chapter 2 in the sense that the construction problem is first solved for
the outer Hodge numbers, and afterwards the inner Hodge numbers are adjusted
via a sequence of suitable blow-ups. However, the failure of Hodge symmetry raises
new technical difficulties and makes the construction more complex than for C. In
order to avoid embedded resolution of singularities, we rely on Maruyama’s theory
of elementary transformations of vector bundles.

It follows that any polynomial relation among the Hodge numbers in positive charac-
teristic is induced by Serre duality, thus generalizing the result from [vDdB21] about
linear relations.

Theorem 1.4 implies in particular that all pairs (hp,q, hq,p) of symmetrically arranged
Hodge numbers (except for the ones in the middle row, since hp,q = hq,p is a
consequence of Serre duality if p + q = n) can simultaneously be different. In fact,
they can even be incongruent modulo arbitrary integers m ≥ 2. Surprisingly, the
only variety with asymmetric Hodge diamond that is needed in our constructions is
Serre’s surface S from [Ser58].

In positive characteristic, it is still true that all outer Hodge numbers are birational
invariants. However, due to the lack of Hodge symmetry, this is harder to prove than
in characteristic zero, see [CR11]. The following statement, proven in chapter 3, is
thus optimal:

Theorem 1.5. Let k be an algebraically closed field of positive characteristic, Let
m ≥ 2 be an integer and let X be a smooth projective k-variety of dimension n. For
any collection of integers (hp,q)1≤p,q≤n−1 such that hp,q = hn−p,n−q for 0 ≤ p, q ≤ n,
there exists a smooth projective k-variety X̃ birational to X such that

hp,q(X̃) ≡ hp,q (mod m)

for all 1 ≤ p, q ≤ n − 1.

Again it follows that the only polynomial birational invariants in the Hodge numbers
are the ones consisting solely of the outer Hodge numbers.

13



1.2. Two questions related to the integral Hodge conjecture

Let X be a smooth projective variety over C. For 0 ≤ k ≤ n, let

Hk,k(X,Z) = {µ ∈ H2k(X,Z) | µC ∈ Hk,k(X)}

denote the group of integral Hodge classes in codimension k, i. e. the integral cohomo-
logy classes of degree 2k corresponding to a class of type (k, k) in H2k(X,C). In
particular, this includes the torsion subgroup of H2k(X,Z).

It is well known that a subvariety Z ⊂ X of codimension k yields an integral Hodge
class [Z] ∈ Hk,k(X,Z). Since rational equivalence of cycles implies homological
equivalence, we get a well-defined map

CHk(X) → Hk,k(X,Z) ,

the cycle class map. This map plays a central role in the connection between algebraic
cycles and Hodge theory.

There has been a lot of work and open conjectures around the kernel and cokernel
of this map. Most prominently, the integral Hodge conjecture states that the cycle
class map is surjective. In codimension k = 1, this follows from the Lefschetz (1, 1)
theorem. For k = 2, however, Atiyah and Hirzebruch [AH61] found a 6-dimensional
counterexample. In their example, the integral Hodge conjecture fails due to a torsion
class. Since then, the integral Hodge conjecture, despite its name, was not studied
as an open conjecture anymore, but rather as a property that a smooth projective
C-variety might satisfy or not.

The first example where the integral Hodge conjecture fails due to a non-torsion
class was found by Kollár [K+91]. It is actually simpler to construct than the
original counterexample of Atiyah and Hirzebruch: Kollár considers a very general
hypersurface X ⊂ P4 of a certain degree d, which we will chose later. The group
H2,2(X,Z) is quite easy to understand: By the Lefschetz hyperplane theorem, we
have H2(X,Z) = Z · α, where α ∈ H2(X,Z) denotes the hyperplane class. By
Poincaré duality, we conclude that H4(X,Z) = Z · 1

dα2, since α3 = d. In particular,
we have H2,2(X,Z) = H4(X,Z). The integral Hodge conjecture thus asserts that X

admits a 1-cycle of degree 1 (where the degree of a 1-cycle is given by its pairing
with α).

Via a degeneration argument, Kollár was able to show that the degree of every curve
C ⊂ X is divisble by k if we choose d = k3 or d = 3k2 with gcd(k, 6) = 1 and k ≥ 5.
A similar example in [K+91], due to van Geemen, shows that the same conclusion
remains true for the asymptotically smaller degree d = 18k with k ≥ 9 and k ≡ 3
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(mod 6). Results of Debarre, Hulek, and Spandaw about very ample line bundles
on Abelian varieties [DHS94] extend this statement to all degrees d = 6k with odd
k ≥ 9.

Perhaps surprisingly, the integral Hodge conjecture was not explicitly mentioned in
[K+91]. Instead, the results were motivated by a series of conjectures of Griffiths
and Harris [GH85] about curves on very general hypersurfaces X ⊂ P4 of degree
d ≥ 6. The weakest of their conjectures states that the degree of every curve C ⊂ X

is divisible by d, which is stronger than any of the above results from [K+91].

The condition d ≥ 6 is necessary to avoid the existence of lines. Clearly, a very
general hypersurface X ⊂ P4 of degree d ≥ 6 always contains a curve of degree d,
given as a general plane intersection X ∩P2. In terms of the integral Hodge conjecture,
α2 ∈ H4(X,Z) is always algebraic, i. e. every integral Hodge class becomes algebraic
after multiplication with d. In particular, the rational Hodge conjecture is true for
X.

Let us describe more precisely how (the failure of) the integral Hodge conjecture for
X is related to the conjecture of Griffiths and Harris about the possible degrees of
curves on X. Let r denote the greatest common divisor of the degrees of all curves
C ⊂ X, i. e. the smallest positive degree of a (not necessarily effective) 1-cycle on X.
Let Z4(X) be the cokernel of the cycle class map CH1(X) → H2,2(X,Z). Then we
have Z4(X) = Z/r. The integral Hodge conjecture says that Z4(X) = 0 or r = 1.
The conjecture of Griffiths and Harris predicts that r = d or Z4(X) = Z/d, meaning
that the integral Hodge conjecture fails to the maximum possible extent.

Apart from the results in [K+91] sketched above, not much is known about the
degrees of curves on a very general hypersurface X ⊂ P4. It is a result of Wu [Wu90]
that every curve C ⊂ X having degree ≤ 2d − 2 is a complete intersection with a
surface in P4. In particular, every curve C ⊂ X has degree ≥ d. However, this does
not restrict the divisibility of deg C and hence not the possible degrees of 1-cycles on
X. For example, there might exist two curves on X whose degrees are very large,
but differ only by 1.

The main result of chapter 4 is the following:

Theorem 1.6. There exist infinitely many degrees d where the conjecture of Griffiths
and Harris is true.

Recall that the conjecture was not known for a single d before. The degrees appearing
in Theorem 1.6 are described by an explicit number-theoretic condition and have
positive density among the natural numbers. The smallest of them is d = 5005 =
5 · 7 · 11 · 13.
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For an even larger set of degrees d, having density 1, we are able to disprove the
integral Hodge conjecture. Moreover, we construct a smooth projective hypersurface
X ⊂ P4 defined over Q such that the degree of every curve C ⊂ X is divisible by
the degree of X (which is not 1). This is based on a construction by Totaro [Tot13]
producing examples over Q for the results from [K+91].

Finally, Theorem 1.6 generalizes from threefolds to hypersurfaces of arbitrary dimen-
sions, and from 1-cycles to arbitrary positive-dimensional cycles:

Theorem 1.7. For every n ≥ 3, there exists a set of degrees d with positive density
such that the degree of every positive-dimensional algebraic cycle on a very general
hypersurface X ⊂ Pn+1 of degree d is divisible by d.

Let us come back to the integral Hodge conjecture in general. As we have seen,
very general hypersurfaces X ⊂ P4 of suitably chosen degrees d ≥ 6 provide counter-
examples to the integral Hodge conjecture. Since these threefolds are of general
type, one might ask whether there exist 3-dimensional counterexamples of Kodaira
dimension < 3.

Voisin [Voi06] showed that no such examples of Kodaira dimension −∞ exist. In other
words, the integral Hodge conjecture is true for uniruled threefolds. Totaro [Tot21]
proved the integral Hodge conjecture for threefolds X of Kodaira dimension 0 with
H0(X, ωX) ̸= 0. On the other hand, 3-dimensional counterexamples in any Kodaira
dimension ≥ 0 were constructed by Benoist and Ottem [BO20] (these necessarily
satisfy H0(X, ωX) = 0 in Kodaira dimension 0).

It follows from weak factorization that the cokernel Z4(X) of the cycle class map is
a birational invariant. Hence, the integral Hodge conjecture in codimension 2 is true
for all rational varieties. This leads to the question whether there exist rationally
connected or even unirational counterexamples to the integral Hodge conjecture in
codimension 2. No such examples of dimension 3 can exist by [Voi06].

In dimension 4, Schreieder [Sch19] was able to construct a unirational variety violating
the integral Hodge conjecture. His proof is based on an abstract description of Z4(X)
in terms of unramified cohomology from [CTV12]. Concretely, we have

Z4(X)[m] ∼=
H3

nr(X,Z/m)
H3

nr(X,Z) ⊗ Z/m

for all m ≥ 2. If CH0(X) is supported on a surface, we have H3
nr(X,Z) = 0 and

the above formula simplifies to Z4(X)[m] ∼= H3
nr(X,Z/m). In [Sch19], Schreieder

constructed a singular conic bundle over P3 and was able to prove the existence of
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a non-zero class in H3
nr(X,Z/2) for any smooth resolution X of this conic bundle.

Therefore, the integral Hodge conjecture fails for any such X.

Since this argument uses the above description of Z4(X)[2], it is unclear whether
the failure of the integral Hodge conjecture stems from a torsion cohomology class,
as in the original counterexample by Atiyah and Hirzebruch, or from a non-torsion
cohomology class, as in Kollár’s examples discussed earlier. As shown in [Sch23], this
question is equivalent to the problem whether the corresponding unramified class in
H3

nr(X,Z/2) can be represented by a global class in H3(X,Z/2).

In chapter 5, we study Schreieder’s example from a different, more concrete per-
spective. We carry out the first steps towards answering the open question raised
in the preceding paragraph: First, we construct a smooth conic X birational to the
given singular model. After that, we carefully study the corresponding unramified
cohomology class on X and describe it expicitly via Borel–More homology. This
allows to provide a geometric explanation for its unramifiedness. Furthermore, we
reduce the question of representability by a global class to the cohomological vanish-
ing of an explicitly given algebraic cycle. This algebraic cycle represents twice the
non-algebraic Hodge class in Schreieder’s example.

Our approach is unusual in the sense that most previous arguments involving
unramified cohomology were quite abstract, whereas in chapter 5 we determine
conrete equations for real submanifolds representing unramified cohomology classes.
Along the way, we obtain a geometric description for the norm residue map over C,
which might be of independent interest.

17



Acknowledgements

First and foremost I would like to thank Stefan Schreieder for his continuous support
and countless useful discussions during my time as his (first) PhD student. He is an
excellent advisor, a very nice and helpful person, and opened many opportunities to
me.

I am grateful to Remy van Dobben de Bruyn for our joint work [vDdBP20]. It was
a pleasure to collaborate with him. I thank Jędrzej Garnek for correcting a mistake
in [vDdBP20, Lemma 2.4] (Lemma 3.6 in this thesis).

I would like to thank the referees of [PS19], [vDdBP20], and [Pau22] for their reports
and their helpful suggestions. Thanks to Samet Balkan, Raymond Cheng, Olivier de
Gaay Fortman, Klaus Hulek, Niklas Kuhn, John Christian Ottem, Matthias Schütt,
and Fumiaki Suzuki for useful conversations.

I received funding by the DFG project “Topological properties of algebraic varieties”
(grant no. 416054549). I am especially grateful to Institut Mittag-Leffler in Djursholm
(supported by the Swedish Research Council under grant no. 2016-06596), where I
spent a memorable and productive time during autumn 2021.

18



2. Constructing Hodge diamonds
modulo m in characteristic zero

Abstract

For any integer m ≥ 2 and any dimension n ≥ 1, we show that any
n-dimensional Hodge diamond with values in Z/mZ is attained by
the Hodge numbers of an n-dimensional smooth complex projective
variety. As a corollary, there are no polynomial relations among
the Hodge numbers of n-dimensional smooth complex projective
varieties besides the ones induced by the Hodge symmetries, which
answers a question raised by Kollár in 2012.

This chapter is based on [PS19], which was joint work with Stefan Schreieder.

2.1. Introduction

Hodge theory allows one to decompose the k-th Betti cohomology of an n-dimensional
compact Kähler manifold X into its (p, q)-pieces for all 0 ≤ k ≤ 2n:

Hk(X,C) =
⊕

p+q=k
0≤p,q≤n

Hp,q(X) , Hp,q(X) = Hq,p(X) .

The C-linear subspaces Hp,q(X) are naturally isomorphic to the Dolbeault cohomology
groups Hq(X, Ωp

X).



The integers hp,q(X) = dimC Hp,q(X) for 0 ≤ p, q ≤ n are called Hodge numbers.
One usually arranges them in the so called Hodge diamond:

hn,n

hn,n−1 hn−1,n

. .
. ...

. . .

hn,1 h1,n

hn,0 hn−1,1 · · · h1,n−1 h0,n

hn−1,0 h0,n−1

. . .
... . .

.

h1,0 h0,1

h0,0

The sum of the k-th row of the Hodge diamond equals the k-th Betti number.
We always assume that a Kähler manifold is compact and connected, so we have
h0,0 = hn,n = 1.

Complex conjugation and Serre duality induce the symmetries

hp,q = hq,p = hn−p,n−q for all 0 ≤ p, q ≤ n . (2.1)

Additionally, we have the Lefschetz inequalities

hp,q ≤ hp+1,q+1 for p + q < n . (2.2)

While Hodge theory places severe restrictions on the geometry and topology of Kähler
manifolds, Simpson points out in [Sim04] that very little is known to which extent
the theoretically possible phenomena actually occur. This leads to the following
construction problem for Hodge numbers:

Question 2.1. Let (hp,q)0≤p,q≤n be a collection of non-negative integers with h0,0 = 1
obeying the Hodge symmetries (2.1) and the Lefschetz inequalities (2.2). Does there
exist a Kähler manifold X such that hp,q(X) = hp,q for all 0 ≤ p, q ≤ n?

After results in dimensions two and three (see e. g. [Hun89]), significant progress has
been made by Schreieder [Sch15]. For instance, it is shown in [Sch15, Theorem 3]
that the above construction problem is fully solvable for large parts of the Hodge
diamond in arbitrary dimensions. In particular, the Hodge numbers in a given weight
k may be arbitrary (up to a quadratic lower bound on hp,p if k = 2p is even) and so
the outer Hodge numbers can be far larger than the inner Hodge numbers (see [Sch15,
Theorem 1]), contradicting earlier expectations formulated in [Sim04]. Weaker results
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with simpler proofs, concerning the possible Hodge numbers in a given weight, have
later been obtained by Arapura [Ara16].

In [Sch15], it was also observed that one cannot expect a positive answer to Ques-
tion 2.1 in its entirety. For example, any 3-dimensional Kähler manifold X with
h1,1(X) = 1 and h2,0(X) ≥ 1 satisfies h2,1(X) < 126 · h3,0(X), see [Sch15, Proposi-
tion 28]. Therefore, a complete classification of all possible Hodge diamonds of Kähler
manifolds or smooth complex projective varieties seems hopelessly complicated.

While these inequalities aggravate the construction problem for Hodge numbers, one
might ask whether there also exist number theoretic obstructions for possible Hodge
diamonds. For example, the Chern numbers of Kähler manifolds satisfy certain
congruences due to integrality conditions implied by the Hirzebruch–Riemann–Roch
theorem.

For an arbitrary integer m ≥ 2, let us consider the Hodge numbers of a Kähler
manifold in Z/mZ, which forces all inequalities to disappear. The purpose of this
chapter is to show that Question 2.1 is modulo m completely solvable even for smooth
complex projective varieties:

Theorem 2.2. Let m ≥ 2 be an integer. For any integer n ≥ 1 and any collection of
integers (hp,q)0≤p,q≤n such that h0,0 = 1 and hp,q = hq,p = hn−p,n−q for 0 ≤ p, q ≤ n,
there exists a smooth complex projective variety X of dimension n such that

hp,q(X) ≡ hp,q (mod m)

for all 0 ≤ p, q ≤ n.

Therefore, the Hodge numbers of Kähler manifolds do not follow any number theoretic
rules, and the behaviour of smooth complex projective varieties is the same in this
aspect.

As a consequence of Theorem 2.2, we show:

Corollary 2.3. Up to the Hodge symmetries (2.1), there are no polynomial rela-
tions among the Hodge numbers of smooth complex projective varieties of the same
dimension.

In particular, there are no polynomial relations in the strictly larger class of Kähler
manifolds, which was a question raised by Kollár after a colloquium talk of Kotschick
at the University of Utah in fall 2012. For linear relations among Hodge numbers,
this question was settled in work of Kotschick and Schreieder [KS13].
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We call the Hodge numbers hp,q(X) with p ∈ {0, n} or q ∈ {0, n} (i. e. the ones
placed on the border of the Hodge diamond) the outer Hodge numbers of X and the
remaining ones the inner Hodge numbers. Note that the outer Hodge numbers are
birational invariants and are thus determined by the birational equivalence class of
X.

Our proof shows (see Theorem 2.5 below) that any smooth complex projective variety
is birational to a smooth complex projective variety with prescribed inner Hodge
numbers in Z/mZ. As a corollary, there are no polynomial relations among the
inner Hodge numbers within a given birational equivalence class. This is again a
generalization of the corresponding result for linear relations obtained in [KS13,
Theorem 2].

The proof of Theorem 2.2 can thus be divided into two steps: First we solve the
construction problem modulo m for the outer Hodge numbers. This is done in
Section 2.2. Then we show the aforementioned result that the inner Hodge numbers
can be adjusted arbitrarily in Z/mZ via birational equivalences (in fact, via repeated
blow-ups). This is done in Section 2.3. Finally, in Section 2.4 we deduce that
no non-trivial polynomial relations between Hodge numbers exist, thus answering
Kollár’s question.

2.2. Outer Hodge numbers

We prove the following statement via induction on the dimension n ≥ 1.

Proposition 2.4. For any collection of integers (hp,0)1≤p≤n, there exists a smooth
complex projective variety Xn of dimension n together with a very ample line bundle
Ln on Xn such that

hp,0(Xn) ≡ hp,0 (mod m)

for all 1 ≤ p ≤ n and
χ(L−1

n ) ≡ 1 (mod m) .

Proof. We take X1 to be a curve of genus g where g ≡ h1,0 (mod m). Further, we
take L1 to be a line bundle of degree d on X1 where d > 2g and d ≡ −g (mod m).
Then L1 is very ample and by the Riemann–Roch theorem we have χ(L−1

1 ) ≡ 1
(mod m).

Now let n > 1. We define a collection of integers (kp,0)−1≤p≤n−1 recursively via

k−1,0 = 0 , k0,0 = 1 , kp,0 = hp,0 − 2kp−1,0 − kp−2,0 for 1 ≤ p ≤ n − 1 .
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We choose Xn−1 and Ln−1 by induction hypothesis such that hp,0(Xn−1) ≡ kp,0

(mod m) for all 1 ≤ p ≤ n − 1.

Let E be a smooth elliptic curve and let L be a very ample line bundle of degree d

on E such that d ≡ 1 (mod m). Let e be a positive integer such that

e ≡ 1 +
n∑

p=1
(−1)php,0 (mod m) .

Let Xn ⊂ Xn−1 × E × E be a hypersurface defined by a general section of the very
ample line bundle

Pn = pr∗
1Ln−1 ⊗ pr∗

2Lm−1 ⊗ pr∗
3Le

on Xn−1 × E × E. By Bertini’s theorem, we may assume Xn to be smooth and
irreducible. Let Ln be the restriction to Xn of the very ample line bundle

Qn = pr∗
1Ln−1 ⊗ pr∗

2L ⊗ pr∗
3L

on Xn−1 × E × E. Then Ln is again very ample.

By the Lefschetz hyperplane theorem, we have

hp,0(Xn) = hp,0(Xn−1 × E × E)

for all 1 ≤ p ≤ n − 1. Since the Hodge diamond of E × E is

1
2 2

1 4 1
2 2

1

,

Künneth’s formula yields

hp,0(Xn) = hp,0(Xn−1) + 2hp−1,0(Xn−1) + hp−2,0(Xn−1)
≡ kp,0 + 2kp−1,0 + kp−2,0 (mod m)
= hp,0

for all 1 ≤ p ≤ n − 1. Therefore, it only remains to show that hn,0(Xn) ≡ hn,0

(mod m) and χ(L−1
n ) ≡ 1 (mod m). Since

χ(OXn) = 1 +
n∑

p=1
(−1)php,0(Xn) ,

the congruence hn,0(Xn) ≡ hn,0 (mod m) is equivalent to χ(OXn) ≡ e (mod m).
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By definition of Xn, the ideal sheaf on Xn−1 × E × E of regular functions vanishing
on Xn is isomorphic to the sheaf of sections of the dual line bundle P −1

n . Hence,
there is a short exact sequence

0 → P −1
n → OXn−1×E×E → i∗OXn → 0 (2.3)

of sheaves on Xn−1 × E × E where i : Xn → Xn−1 × E × E denotes the inclusion.
Together with Künneth’s formula and the Riemann–Roch theorem, we obtain

χ(OXn) = χ(OXn−1×E×E) − χ(P −1
n )

= χ(OXn−1) χ(O)2︸ ︷︷ ︸
=0

− χ(L−1
n−1)︸ ︷︷ ︸

≡1

χ(L1−m)︸ ︷︷ ︸
≡1

χ(L−e)︸ ︷︷ ︸
≡−e

≡ e (mod m) .

Tensoring (2.3) with Q−1
n yields the short exact sequence

0 → P −1
n ⊗ Q−1

n → Q−1
n → i∗i∗Q−1

n → 0

and thus

χ(L−1
n ) = χ(Q−1

n ) − χ(P −1
n ⊗ Q−1

n )
= χ(L−1

n−1)︸ ︷︷ ︸
≡1

χ(L−1)2︸ ︷︷ ︸
≡1

−χ(L−2
n−1) χ(L−m)︸ ︷︷ ︸

≡0

χ(L−e−1)

≡ 1 (mod m) .

This finishes the induction step.

2.3. Inner Hodge numbers

We now show the following result, which significantly improves [KS13, Theorem 2].

Theorem 2.5. Let X be a smooth complex projective variety of dimension n and
let (hp,q)1≤p,q≤n−1 be any collection of integers such that hp,q = hq,p = hn−p,n−q for
1 ≤ p, q ≤ n − 1. Then X is birational to a smooth complex projective variety X ′

such that
hp,q(X ′) ≡ hp,q (mod m)

for all 1 ≤ p, q ≤ n − 1.
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Together with Proposition 2.4, this will complete the proof of Theorem 2.2.

Let us recall the following result on blow-ups, see e. g. [Voi03, Theorem 7.31]: If X̃

denotes the blow-up of a Kähler manifold X along a closed submanifold Z ⊂ X of
codimension c, we have

Hp,q(X̃) ∼= Hp,q(X) ⊕
c−1⊕
i=1

Hp−i,q−i(Z) .

Therefore,

hp,q(X̃) = hp,q(X) +
c−1∑
i=1

hp−i,q−i(Z) . (2.4)

In order to prove Theorem 2.5, we first show that we may assume that X contains
certain subvarieties, without modifying its Hodge numbers modulo m.

Lemma 2.6. Let X be a smooth complex projective variety of dimension n. Let
r, s ≥ 0 be integers such that r +s ≤ n−1. Then X is birational to a smooth complex
projective variety X ′ of dimension n such that hp,q(X ′) ≡ hp,q(X) (mod m) for all
0 ≤ p, q ≤ n and such that X ′ contains at least m disjoint smooth closed subvarieties
that are all isomorphic to a projective bundle of rank r over Ps.

Proof. We first blow up X in a point and denote the result by X̃. The exceptional
divisor is a subvariety in X̃ isomorphic to Pn−1. In particular, X̃ contains a copy of
Ps ⊂ Pn−1. Now we blow up X̃ along Ps to obtain X̂. The exceptional divisor in X̂

is the projectivization of the normal bundle of Ps in X̃. Since Ps is contained in a
smooth closed subvariety of dimension r + s + 1 in X̃ (choose either Pr+s+1 ⊂ Pn−1

if r + s < n − 1 or X̃ if r + s = n − 1), the normal bundle of Ps in X̃ contains a
vector subbundle of rank r + 1, and hence its projectivization contains a projective
subbundle of rank r. Therefore, X̂ admits a subvariety isomorphic to the total space
of a projective bundle of rank r over Ps.

By (2.4), the above construction only has an additive effect on the Hodge diamond,
i. e. the differences between respective Hodge numbers of X̂ and X are constants
independent of X. Hence, we may apply the above construction m − 1 more times
to obtain a smooth complex projective variety X ′ containing m disjoint copies of the
desired projective bundle and satisfying hp,q(X ′) ≡ hp,q(X) (mod m).

In the following, we consider the primitive Hodge numbers

lp,q(X) = hp,q(X) − hp−1,q−1(X)
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for p+q ≤ n. Clearly, it suffices to show Theorem 2.5 for a given collection (lp,q)(p,q)∈I

of primitive Hodge numbers instead, where

I = {(p, q) | 1 ≤ p ≤ q ≤ n − 1 and p + q ≤ n} .

This is because one can get back the original Hodge numbers from the primitive
Hodge numbers via the relation

hp,q(X) = h0,q−p(X) +
p∑

i=1
li,q−p+i(X)

for p ≤ q and p + q ≤ n, and h0,q−p(X) is a birational invariant.

We define a total order ≺ on I via

(r, s) ≺ (p, q) ⇐⇒ r + s < p + q or (r + s = p + q and s < q) .

Proposition 2.7. Let X be a smooth complex projective variety of dimension n.
Let (r, s) ∈ I. Then X is birational to a smooth complex projective variety X ′ of
dimension n such that

lr,s(X ′) ≡ lr,s(X) + 1 (mod m)

and
lp,q(X ′) ≡ lp,q(X) (mod m)

for all (p, q) ∈ I with (r, s) ≺ (p, q).

Proof. By Lemma 2.6, we may assume that X contains m disjoint copies of a
projective bundle of rank r − 1 over Ps−r+1. Therefore, it is possible to blow up X

along a projective bundle Bd of rank r − 1 over smooth hypersurfaces Yd ⊂ Ps−r+1

of degree d (in case of r = s, Yd just consists of d distinct points in P1) and we may
repeat this procedure m times and with different values for d. The Hodge numbers
of Bd are the same as for the trivial bundle Yd × Pr−1, see e. g. [Voi03, Lemma 7.32].

By the Lefschetz hyperplane theorem, the Hodge diamond of Yd is the sum of the
Hodge diamond of Y1 ∼= Ps−r, having non-zero entries only in the middle column,
and of a Hodge diamond depending on d, having non-zero entries only in the middle
row. It is well known (e. g. by computing Euler characteristics as in Section 2.2) that
the two outer entries of this middle row are precisely

( d−1
s−r+1

)
.

Now we blow up X once along Bs−r+2 and m − 1 times along B1 and denote the
resulting smooth complex projective variety by X ′. Due to (2.4) and Künneth’s
formula, this construction affects the Hodge numbers modulo m in the same way
as if we would blow up a single subvariety Z × Pr−1 ⊂ X, where Z is a (formal)
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(s − r)-dimensional Kähler manifold whose Hodge diamond is concentrated in the
middle row and has outer entries equal to

(s−r+2−1
s−r+1

)
= 1. In particular, we have

hp,q(Z × Pr−1) = 0 unless s − r ≤ p + q ≤ s + r − 2 (and p + q has the same
parity as s − r) and |p − q| ≤ s − r. On the other hand, hp,q(Z × Pr−1) = 1 if
s − r ≤ p + q ≤ s + r − 2 and |p − q| = s − r.

Taking differences in (2.4), it follows that

lp,q(X ′) ≡ lp,q(X) + hp−1,q−1(Z × Pr−1) − hp−n+s−1,q−n+s−1(Z × Pr−1) (mod m)

for all p + q ≤ n. But we have

(p − n + s − 1) + (q − n + s − 1) = p + q − 2n + 2s − 2 ≤ 2s − n − 2 ≤ s − r − 2

and hence hp−n+s−1,q−n+s−1(Z × Pr−1) = 0 for all (p, q) ∈ I by the above remark.

Further,

lr,s(X ′) ≡ lr,s(X) + hr−1,s−1(Z × Pr−1) = lr,s(X) + 1 (mod m)

since s − r ≤ (r − 1) + (s − 1) ≤ s + r − 2 and |r − s| = s − r.

Finally, r + s < p + q implies (p − 1) + (q − 1) > s + r − 2, while r + s = p + q and
s < q imply |p − q| > s − r, so we have hp−1,q−1(Z × Pr−1) = 0 in both cases and
thus

lp,q(X ′) ≡ lp,q(X) + hp−1,q−1(Z × Pr−1) = lp,q(X) (mod m)

for all (p, q) ∈ I with (r, s) ≺ (p, q).

Proof of Theorem 2.5. The statement is an immediate consequence of applying Pro-
position 2.7 inductively tp,q times to each (p, q) ∈ I in the descending order induced
by ≺, where tp,q ≡ lp,q − lp,q(Xp,q) (mod m) and Xp,q is the variety obtained in the
previous step.

2.4. Polynomial relations

The following principle seems to be classical.

Lemma 2.8. Let N ≥ 1 and let S ⊂ ZN be a subset such that its reduction modulo m

is the whole of (Z/mZ)N for infinitely many integers m ≥ 2. If f ∈ C[x1, . . . , xN ] is
a polynomial vanishing on S, then f = 0.
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Proof. Let f ∈ C[x1, . . . , xN ] be a non-zero polynomial vanishing on S. By choosing
a Q-basis of C and a Q-linear projection C → Q which sends a non-zero coefficient
of f to 1, we see that we may assume that the coefficients of f are rational, hence
even integral. Since f ̸= 0, there exists a point z ∈ ZN such that f(z) ̸= 0. Choose
an integer m ≥ 2 from the assumption which does not divide f(z). Then f(z) ̸≡ 0
(mod m). However, we have z ≡ s (mod m) for some s ∈ S and thus f(z) ≡ f(s) = 0
(mod m), because f ∈ Z[x1, . . . , xN ]. This is a contradiction.

Proof of Corollary 2.3. This follows by applying Lemma 2.8 to the set S of possible
Hodge diamonds, where we consider only a non-redundant quarter of the diamond to
take the Hodge symmetries into account. Theorem 2.2 guarantees that the reductions
of S modulo m are surjective even for all integers m ≥ 2.

In the same way Theorem 2.2 implies Corollary 2.3, Theorem 2.5 yields the following.

Corollary 2.9. There are no non-trivial polynomial relations among the inner Hodge
numbers of all smooth complex projective varieties in any given birational equivalence
class.
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3. Constructing Hodge diamonds
modulo m in positive characteristic

Abstract

Let k be an algebraically closed field of positive characteristic. For
any integer m ≥ 2, we show that the Hodge numbers of a smooth
projective k-variety can take on any combination of values modulo m,
subject only to Serre duality. In particular, there are no non-trivial
polynomial relations between the Hodge numbers.

This chapter is based on [vDdBP20], which was joint work with Remy van Dobben
de Bruyn.

3.1. Introduction

The Hodge numbers hp,q(X) = dimC Hq(X, Ωp
X) of an n-dimensional smooth pro-

jective variety X over C satisfy the following conditions:

(1) h0,0(X) = 1 (connectedness);
(2) hp,q(X) = hn−p,n−q(X) for all 0 ≤ p, q ≤ n (Serre duality);
(3) hp,q(X) = hq,p(X) for all 0 ≤ p, q ≤ n (Hodge symmetry).

Kotschick and Schreieder showed [KS13, Thm. 1, consequence (2)] that the only
linear relations among the Hodge numbers that are satisfied by all smooth projective
C-varieties of dimension n are the ones induced by (1), (2), and (3).



In positive characteristic, Hodge symmetry (3) does not always hold [Ser58, Prop. 16],
but Serre duality (2) is still true. Van Dobben de Bruyn proved that (1) and (2) are
indeed the only universal linear relations among the Hodge numbers of n-dimensional
smooth projective k-varieties if char k > 0 [vDdB21, Thm. 1].

In [PS19, Thm. 2], the author and Schreieder solved the construction problem over
C for Hodge diamonds modulo an arbitrary integer m ≥ 2. This means that for any
dimension n and any collection of integers satisfying the conditions (1), (2), and (3),
there exists a smooth projective C-variety of dimension n whose Hodge numbers
agree with the given integers modulo m. As a corollary, there are no non-trivial
polynomial relations among the Hodge numbers, which strengthens the result from
[KS13] on linear relations.

In this chapter, we solve the construction problem for Hodge diamonds modulo m in
positive characteristic:

Theorem 3.1. Let k be an algebraically closed field of positive characteristic, and
let m ≥ 2 and n ≥ 0 be integers. Let (ap,q)0≤p,q≤n be any collection of integers such
that a0,0 = 1 and ap,q = an−p,n−q for all 0 ≤ p, q ≤ n. Then there exists a smooth
projective k-variety X of dimension n such that

hp,q(X) ≡ ap,q (mod m)

for all 0 ≤ p, q ≤ n.

In analogy to [PS19, Cor. 3], it follows that there are no polynomial relations among
the Hodge numbers in positive characteristic besides (1) and (2) (see Corollary 3.18).
This extends the result from [vDdB21, Thm. 1] on linear relations.

Theorem 3.1 also shows that Hodge symmetry may fail arbitrarily badly in positive
characteristic. For any dimension n and all 0 ≤ p < q ≤ n with p + q ̸= n, the Hodge
numbers hp,q and hq,p can not only be different, but can even be incongruent modulo
any integer m ≥ 2. Note that Hodge symmetry (3) is a consequence of Serre duality
(2) if p + q = n, and thus always holds in the middle row of the Hodge diamond.

A complete classification of the possible Hodge diamonds of smooth projective k-
varieties, i. e. a version of Theorem 3.1 without the “modulo m” part, seems to be
very hard already when Hodge symmetry is true; see [Sch15] for strong partial results
on this in characteristic zero.

The structure of our proof is similar to [PS19], with some improvements. First we
solve the construction problem modulo m for the outer Hodge numbers, i. e. the
Hodge numbers hp,q with p ∈ {0, n} or q ∈ {0, n} (see Proposition 3.10). Then we
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prove that for any smooth projective k-variety, there exists a sequence of blowups in
smooth centres such that the inner Hodge numbers of the blowup, i. e. the Hodge
numbers hp,q with 1 ≤ p, q ≤ n − 1, attain any given values in Z/m satisfying Serre
duality (2). Hence we obtain the following result, which might be of independent
interest:

Theorem 3.2. Let k be an algebraically closed field of positive characteristic, and let
m ≥ 2 and n ≥ 0 be integers. Let X be a smooth projective k-variety of dimension n

and let (ap,q)1≤p,q≤n−1 be any collection of integers such that ap,q = an−p,n−q for all
1 ≤ p, q ≤ n − 1. Then there exists a smooth projective k-variety X̃ birational to X

such that
hp,q(X̃) ≡ ap,q (mod m)

for all 1 ≤ p, q ≤ n − 1.

The analogous result in characteristic zero was obtained in [PS19, Thm. 5]. The
fact that all outer Hodge numbers are birational invariants in positive characteristic
was proven by Chatzistamatiou and Rülling [CR11, Thm. 1], so Theorem 3.2 is the
best possible statement. Again, it follows that the result from [vDdB21, Thm. 3] on
linear birational invariants extends to polynomials (see Corollary 3.19).

In analogy with [vDdB21, Thm. 2], our constructions only need Serre’s counter-
example [Ser58, Prop. 16] to generate all Hodge asymmetry. While the structure of
our argument is similar to [PS19], the absence of condition (3) in positive character-
istic raises new difficulties for both the inner and the outer Hodge numbers. There
is a quick proof of Theorem 3.2 assuming embedded resolution of singularities in
positive characteristic, see Remark 3.16. The proof we present is similar, but does a
little more work to avoid using embedded resolution. It relies on Maruyama’s theory
of elementary transformations of vector bundles.

In section 3.2, we state and prove some lemmas on Hodge numbers that are used later.
The constructions for outer and inner Hodge numbers are carried out in section 3.3
and section 3.4, respectively. Finally, we deduce corollaries on polynomial relations
in section 3.5.

Throughout this chapter, we fix an algebraically closed field k of positive characteristic
and an integer m ≥ 2.

3.2. Some lemmas on Hodge numbers

In this section, we collect some standard results on Hodge numbers that we will
use repeatedly in the arguments. The only difference between the situation in
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characteristic zero [KS13, PS19] and positive characteristic [vDdB21] comes from
asymmetry of Hodge diamonds, and as in [vDdB21] the only example we need is
Serre’s surface:

Theorem 3.3. There exists a smooth projective k-variety S of dimension two such
that h1,0(S) = 0 and h0,1(S) = 1.

Proof. See [Ser58, Prop. 16], or [vDdB21, Prop. 1.4] for a short modern account.

We use the following well-known formula for Hodge numbers under blowups. In
characteristic zero, this corresponds to equation (2.4), see [Voi03, Theorem 7.31].

Lemma 3.4. Let X be a smooth projective k-variety, let Z ⊆ X be a smooth
subvariety of codimension r, and let X̃ → X be the blowup of X at Z. Then the
Hodge numbers of X̃ satisfy

hp,q(X̃) = hp,q(X) +
r−1∑
i=1

hp−i,q−i(Z).

A consequence that will be used repeatedly is that any blowup construction carried
out m times does not change the Hodge numbers modulo m.

Proof of Lemma 3.4. See for example [Gro85, Cor. IV.1.1.11]. As noted by Achinger
and Zdanowicz [AZ17, Cor. 2.8], it is also an immediate consequence of Voevodsky’s
motivic blowup formula [Voe00, Prop. 3.5.3] and Chatzistamatiou–Rülling’s action
of Chow groups on Hodge cohomology [CR11].

The Hodge numbers of a product X1 × X2 can be easily described in terms of the
Hodge numbers of X1 and X2 by a Künneth-type formula.

Lemma 3.5. Let X1 and X2 be smooth projective k-varieties. Then the Hodge
numbers of X := X1 × X2 are given by

hp,q(X) =
∑

p1+p2=p
q1+q2=q

hp1,q1(X1) · hp2,q2(X2).

Proof. We have ΩX = π∗
1ΩX1 ⊕ π∗

2ΩX2 and thus

Ωp
X =

⊕
p1+p2=p

π∗
1Ωp1

X1
⊗ π∗

2Ωp2
X2

.

32



Hence, using the classical Künneth formula for quasi-coherent sheaves we get

Hq(X, Ωp
X) =

⊕
p1+p2=p

Hq
(
X, π∗

1Ωp1
X1

⊗ π∗
2Ωp2

X2

)
=

⊕
p1+p2=p
q1+q2=q

Hq1
(
X1, Ωp1

X1

)
⊗ Hq2

(
X2, Ωp2

X2

)
.

The next lemma provides a weak Lefschetz theorem for sufficiently ample hypersur-
faces.

Lemma 3.6. Let X be a smooth projective k-variety of dimension n + 1 with a very
ample line bundle L = OX(H). Let d0 ∈ Z>0 such that Hq(X, Ωp

X(−dH)) = 0 when
d ≥ d0 and p + q ≤ n. Then any smooth divisor Y ∈ |dH| with d ≥ d0 satisfies
hp,q(Y ) = hp,q(X) when p + q ≤ n − 1.

Proof. The short exact sequence

0 → Ωp
X(−dH) → Ωp

X → Ωp
X

∣∣
Y

→ 0

shows that for all p + q ≤ n − 1 and all e ≥ 0, we have

Hq
(
X, Ωp

X(−eH)
)

= Hq
(
Y, Ωp

X(−eH)
∣∣
Y

)
. (3.1)

We will prove by induction on p that Hq(Y, Ωp
X(−eH)|Y ) = Hq(Y, Ωp

Y (−eH)) for all
e ≥ 0 and p + q ≤ n − 1. Together with (3.1) this proves the result by taking e = 0.
The base case p = 0 is trivial since OX |Y = OY . For p > 0, the inductive hypothesis,
(3.1), and the assumption on d0 imply

Hq
(
Y, Ωi

Y (−eH)
)

= Hq
(
Y, Ωi

X(−eH)
∣∣
Y

)
= Hq

(
X, Ωi

X(−eH)
)

= 0 (3.2)

for i + q ≤ n − 1, e ≥ d0, and i < p. The conormal sequence

0 → OY (−Y ) → Ω1
X

∣∣
Y

→ Ω1
Y → 0

gives a short exact sequence

0 → Ωp−1
Y (−Y ) → Ωp

X

∣∣
Y

→ Ωp
Y → 0 (3.3)

since OY (−Y ) is a line bundle. Now (3.2) gives

Hq
(
Y, Ωp−1

Y (−Y − eH)
)

= Hq
(
Y, Ωp−1

Y

(
−(d + e)H

) )
= 0

for p + q ≤ n and e ≥ 0. Thus, (3.3) shows that the natural map

Hq
(
Y, Ωp

X(−eH)
∣∣
Y

)
→ Hq

(
Y, Ωp

Y (−eH)
)

is an isomorphism for p + q ≤ n − 1 and e ≥ 0, as claimed.
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Corollary 3.7. Let X be a smooth projective k-variety of dimension n + 1 with a
very ample line bundle L = OX(H). Then any smooth divisor Y ∈ |dH| with d ≫ 0
satisfies hp,q(Y ) = hp,q(X) when p + q ≤ n − 1.

Proof. By Serre vanishing, there exists d0 ∈ Z such that Hq(X, Ωp
X(−dH)) = 0 for

all d ≥ d0 and q ≤ n. Then Lemma 3.6 gives the result.

Remark 3.8. If char k = 0, then by Nakano vanishing we may take d0 = 1 in
Lemma 3.6. This recovers the usual proof of weak Lefschetz from Nakano vanishing.
Similarly, if char k > 0 and Nakano vanishing holds for X, then we may take d0 = 1,
but in general already Kodaira vanishing may fail in positive characteristic [Ray78].

For our application, it’s useful to have some control over the Euler characteristic
of L −1.

Lemma 3.9. Let X be a smooth projective k-variety of dimension n + 1 and let
e ∈ Z. Then, up to modifying X by blowups in smooth centres that do not change its
Hodge numbers modulo m, we may assume that X admits a very ample line bundle
L = OX(H) such that χ(X, L −1) ≡ e (mod m) and such that any smooth divisor
Y ∈ |H| satisfies hp,q(Y ) = hp,q(X) when p + q ≤ n − 1.

Proof. Let π : X̃ → X be a blowup in m distinct points p1, . . . , pm ∈ X. Then the
blowup formula for Hodge numbers (Lemma 3.4) gives hp,q(X̃) ≡ hp,q(X) (mod m).
Let Ei = π−1(pi) be the exceptional divisors, and for r ∈ {0, . . . , m} write E≤r =
E1 + . . . + Er. Then the short exact sequence

0 → OX̃(−E≤r) → OX̃ → OE≤r
→ 0

shows that

χ
(
X̃, OX̃(−E≤r)

)
= χ(X̃, OX̃) −

r∑
i=1

χ(Ei, OEi) = χ(X, OX) − r.

Take r ∈ {0, . . . , m − 1} with r ≡ χ(X, OX) − e (mod m).

Let M be an ample line bundle on X̃. By Serre vanishing there exists a0 ∈ Z such
that for all a ≥ a0, the line bundle L = M ⊗a ⊗ OX̃(E≤r) is very ample and satisfies

Hq(X, Ωp
X ⊗ L −d) = 0 (3.4)

for d > 0 and q ≤ n. Taking a divisible by the product of m and the denominators
of the coefficients of the Hilbert polynomial P (t) = χ(X̃, M ⊗t ⊗ OX̃(−E≤r)), we see
that

χ
(
X̃, L −1) ≡ χ

(
X̃, OX̃(−E≤r)

)
≡ e (mod m).

Finally, L satisfies weak Lefschetz by (3.4) and Lemma 3.6.
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3.3. Outer Hodge numbers

In this section, we solve the construction problem for the outer Hodge numbers.
Because of Serre duality and the fact that h0,0 = 1, it suffices to consider the Hodge
numbers hp,q with (p, q) ∈ Jn, where

Jn = {(1, 0), . . . , (n, 0), (0, 1), . . . , (0, n)}.

The main result of this section is the following:

Proposition 3.10. Let n ≥ 0. For any given integers a1,0, . . . , an,0 and a0,1, . . . , a0,n

with an,0 = a0,n, there exists a smooth projective k-variety X of dimension n such
that

hp,q(X) ≡ ap,q (mod m)

for all (p, q) ∈ Jn.

The construction will be carried out by induction on the dimension, using the weak
Lefschetz results from Corollary 3.7 and Lemma 3.9.

Lemma 3.11. Let n, d ≥ 0 be integers such that d ≥ n − 1. If Proposition 3.10 holds
in dimension d for a1,0, . . . , ad,0 and a0,1, . . . , a0,d with ad,0 = a0,d, then it also holds
in dimension n for a1,0, . . . , an−1,0, b and a0,1, . . . , a0,n−1, b for any b ∈ Z.

Proof. Let X be a smooth projective k-variety of dimension d with the given Hodge
numbers ap,q. We may assume that d ≥ n + 1 by multiplying X with P2, which does
not change its outer Hodge numbers in degree ≤ n − 1. By repeatedly replacing X

by a smooth hyperplane section of sufficiently high degree, we may further assume
that d = n + 1 by Corollary 3.7. By Lemma 3.9, after possibly replacing X by a
blowup that does not change its Hodge numbers modulo m, there exists a very ample
line bundle L on X such that

χ(X, L −1) ≡ (−1)n(a0,n − a0,n+1 − b) (mod m) (3.5)

and such that a smooth section Y of L satisfies hp,q(Y ) ≡ ap,q (mod m) for p + q ≤
n − 1. The short exact sequence

0 → L −1 → OX → OY → 0

gives χ(X, L −1) = χ(X, OX) − χ(Y, OY ). Since h0,q(X) = h0,q(Y ) for q ≤ n − 1, we
conclude that

χ(X, L −1) = (−1)nh0,n(X) + (−1)n+1h0,n+1(X) − (−1)nh0,n(Y )

≡ (−1)n
(
a0,n − a0,n+1 − h0,n(Y )

)
. (mod m)
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With (3.5) we get h0,n(Y ) ≡ b (mod m), so Serre duality gives hn,0(Y ) ≡ b (mod m).

Note that in characteristic zero, Lemma 3.11 immediately implies Proposition 3.10,
giving an alternative approach to a variant of [PS19, Prop. 4]. In positive charac-
teristic, however, the failure of Hodge symmetry raises new difficulties, since e. g.
hn−1,0 = h0,n−1 is true for varieties of dimension n − 1 but not for all varieties of
dimension n. This problem is solved in the following construction, which together
with Lemma 3.11 implies Proposition 3.10.

Lemma 3.12. Let n ≥ 2. For any given integers a0,1, . . . , a0,n−1 and a1,0, . . . , an−1,0,
there exists a smooth projective k-variety X of dimension ≥ n − 1 such that

hp,q(X) ≡ ap,q (mod m)

for all (p, q) ∈ Jn−1.

Note that we do not assume a0,n−1 = an−1,0 here, so we typically need dim X ≥ n.

Proof of Lemma 3.12. First consider the case n = 2. Let E be an elliptic curve and
let S be the surface from Theorem 3.3. Choose i ≥ 0 and j ≥ 1 with i ≡ a0,1 − a1,0

(mod m) and j ≡ a1,0 (mod m), and set X = Si×Ej . Then it follows from Künneth’s
formula (Lemma 3.5) that h0,1(X) ≡ i + j ≡ a0,1 (mod m) and h1,0(X) ≡ j ≡ a1,0

(mod m).

Now assume n ≥ 3. By Lemma 3.11, we may assume inductively that Proposition 3.10
holds in dimensions ≤ n − 1. Therefore, there exists a smooth projective variety Y

of dimension n − 1 with outer Hodge numbers

hp,q(Y ) ≡


(−1)q, p = 0, 0 ≤ q < n − 1,

0, p = 0, q = n − 1,

0, p > 0, q = 0.

(mod m).

By Proposition 3.10 in dimension 2, there exists a smooth projective surface S with
outer Hodge numbers h1,0(S) ≡ h2,0(S) ≡ h0,2(S) ≡ 0 (mod m) and h0,1(S) ≡ 1
(mod m). The Künneth formula from Lemma 3.5 shows that S × Y has outer Hodge
numbers hp,q(S × Y ) ≡ 0 (mod m) for (p, q) ∈ Jn−1, except h0,0(S × Y ) = 1 and
h0,n−1(S × Y ) ≡ (−1)n (mod m).

Finally, by Proposition 3.10 in dimension n − 1, there exists a smooth projective
variety Z with outer Hodge numbers given by

hp,q(Z) ≡

ap,q, (p, q) ∈ Jn−1 \ {(0, n − 1)},

an−1,0, (p, q) = (0, n − 1).
(mod m)
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Taking X = Z × (S × Y )i for i ≥ 0 gives outer Hodge numbers

hp,q(X) ≡

ap,q, (p, q) ∈ Jn−1 \ {(0, n − 1)},

an−1,0 + (−1)ni, (p, q) = (0, n − 1).
(mod m)

The result follows by taking i ≡ (−1)n(a0,n−1 − an−1,0) (mod m).

3.4. Inner Hodge numbers

The aim of this section is to prove Theorem 3.2, i. e. to modify the inner Hodge
numbers of a smooth projective k-variety via successive blowups. We first show how
to produce certain subvarieties with asymmetric Hodge numbers that we will blow
up later.

Lemma 3.13. Let X be a smooth projective k-variety of dimension n, let b, c ∈ Z,
and let d ∈ {2, . . . , n − 2}. Then there exists a smooth projective variety X̃ and a
birational morphism X̃ → X obtained as a composition of blowups in smooth centres
that does not change the Hodge numbers modulo m such that X̃ contains a smooth
subvariety W of dimension d satisfying

hd,0(W ) = h0,d(W ) ≡ 0 (mod m) (3.6)

and
hd−1,0(W ) ≡ b, h0,d−1(W ) ≡ c (mod m). (3.7)

Proof. Let X1 → X be the blowup of X in a point. The assumption on d implies
n ≥ 4, so the exceptional divisor of X1 contains P3. By Proposition 3.10, there exists
a smooth projective surface S0 such that h2,0(S0) = h0,2(S0) ≡ 0 (mod m) and

h1,0(S0) ≡ b, h0,1(S0) ≡ c (mod m).

Choose a possibly singular surface S1 ⊆ P3 birational to S0. By embedded resolution
of surfaces [Abh66, Thm. 9.1.3] (see also [Cut09, Thm. 1.2]), there exists a birational
morphism X2 → X1 obtained as a composition of blowups in smooth centres contained
in P3 such that the strict transform S of S1 is smooth. Since S is also birational to
S0, we have h2,0(S) = h0,2(S) ≡ 0 (mod m) and

h1,0(S) ≡ b, h0,1(S) ≡ c (mod m).

Now consider the blowup X3 → X2 in S. The exceptional divisor is a Pn−3-bundle
PS(E ) over S. Let Z ⊆ Pn−3 be a smooth hypersurface of degree d in a linear
subspace Pd−1 ⊆ Pn−3; in particular, Z satisfies hd−2,0(Z) = h0,d−2(Z) = 1.
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By Maruyama’s theory of elementary transformations (see [vDdBP20, Proposi-
tion A.8]), there exists a diagram

P̃

S × Pn−3 PS(E ) X3 ,

f f ′

where f and f ′ are blowups in smooth centres Y and Y ′ respectively, such that
Y ∩ (S ×Z) is smooth. Then the blowup X4 → X3 in Y ′ contains the strict transform

W = S̃ × Z = BlY ∩(S×Z)(S × Z)

of S × Z under f . Birational invariance of outer Hodge numbers (in the case of a
blowup this is Lemma 3.4) and the Künneth formula (Lemma 3.5) give

hd,0(W ) = h0,d(W ) = hd,0(S × Z) = h2,0(S)hd−2,0(Z) ≡ 0 (mod m),
hd−1,0(W ) = hd−1,0(S × Z) = h2,0(S)hd−3,0(Z) + h1,0(S)hd−2,0(Z) ≡ b (mod m),
h0,d−1(W ) = h0,d−1(S × Z) = h0,2(S)h0,d−3(Z) + h0,1(S)h0,d−2(Z) ≡ c (mod m).

Blowing up m − 1 more points coming from X and repeating the above construction
m − 1 more times in each exceptional Pn−1 separately, the blowup formula of
Lemma 3.4 shows that the Hodge numbers of X do not change modulo m.

Corollary 3.14. Let X be a smooth projective k-variety of dimension n, let b, c ∈ Z,
and let r ∈ {1, . . . , n − 1}. Assume that b = c if r = 1 or r = n − 1. Then there exists
a birational morphism X̃ → X obtained by a sequence of blowups in smooth centres
such that

hr,1(X̃) ≡ hr,1(X) + b, h1,r(X̃) ≡ h1,r(X) + c (mod m)

and
hp,1(X̃) ≡ hp,1(X), h1,p(X̃) ≡ h1,p(X) (mod m)

for all p > r.

Proof. If r ∈ {2, . . . , n − 2}, then Lemma 3.13 shows that there exists a successive
blowup X ′ → X that does not change the Hodge numbers modulo m such that X ′

contains a subvariety W of dimension r satisfying (3.6) and (3.7). Letting X̃ → X ′

be the blowup in W gives the result by Lemma 3.4.

For r = 1, we consider the blowup in i ≥ 0 points where i ≡ b = c (mod m). Then
the statement follows again from Lemma 3.4.

For r = n − 1, we first blow up X in i ≥ 0 points where i ≡ b = c (mod m). Then,
in each exceptional Pn−1 we blow up a smooth hypersurface Z of degree n. Since
hn−2,0(Z) = h0,n−2(Z) = 1, the result follows from Lemma 3.4.
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We are now able to solve the construction problem modulo m for the second outer
Hodge numbers, i. e. the inner Hodge numbers hp,q with p ∈ {1, n−1} or q ∈ {1, n−1},
via repeated blowups in smooth centres. By Serre duality, it is enough to consider
the Hodge numbers hp,q with (p, q) ∈ In, where

In =
{

(1, q)
∣∣∣ q ∈ {1, . . . , n − 1}

}
∪
{

(p, 1)
∣∣∣ p ∈ {1, . . . , n − 1}

}
.

Corollary 3.15. Let X be a smooth projective k-variety of dimension n. For any
given collection of integers (ap,q)(p,q)∈In

with an−1,1 = a1,n−1, there exists a birational
morphism X̃ → X obtained by a sequence of blowups in smooth centres such that

hp,q(X̃) ≡ ap,q (mod m)

for all (p, q) ∈ In.

Proof. For r ∈ {1, . . . , n − 1}, let b = ar,1 − hr,1(X) and c = a1,r − h1,r(X). We
see that b = c if r = 1 or r = n − 1. Hence, we may apply Corollary 3.14 for all
r ∈ {1, . . . , n − 1} in descending order to obtain the result.

Finally, we are ready to prove Theorem 3.2, which together with Proposition 3.10
implies our main result Theorem 3.1.

Proof of Theorem 3.2. We will proceed by induction on n. The case n ≤ 1 is vacuous,
as there are no inner Hodge numbers. Let n ≥ 2, and assume the result is known in all
dimensions ≤ n − 1. By Corollary 3.15, there exists a birational morphism X1 → X

obtained by a sequence of blowups in smooth centres such that for (p, q) ∈ In we
have

hp,q(X1) ≡ ap,q − hp−1,q−1
(
Pn−2

)
(mod m).

Let X2 → X1 be the blowup in a point, and let Pn−2 ⊆ X2 be a hyperplane in the
exceptional divisor. By the induction hypothesis, there exists a birational morphism
P̃ → Pn−2 obtained by a sequence of blowups in smooth centres such that the Hodge
numbers of P̃ are given by

hp,q(P̃ ) ≡

hp,q
(
Pn−2) , p ∈ {0, n − 2} or q ∈ {0, n − 2},

ap+1,q+1 − hp+1,q+1(X1), else.
(mod m)

Since P̃ → Pn−2 is a sequence of blowups in smooth centres, we can blow up the
(strict transforms of) the same centres in X2 to get a birational morphism X3 → X2
such that the strict transform of Pn−2 is P̃ . Blowing up m − 1 more points coming
from X1 and applying the same construction in each of the exceptional divisors
separately gives a birational morphism X4 → X1 that does not change the Hodge
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numbers modulo m by the blowup formula of Lemma 3.4. Finally, if we let X̃ → X4
be the blowup in one of the P̃ obtained in this way, we get

hp,q(X̃) = hp,q(X1) + hp−1,q−1(P̃ ) ≡ ap,q (mod m)

for all (p, q) with 1 ≤ p, q ≤ n − 1, which finishes the induction step.

Remark 3.16. The proof above can be simplified if one assumes embedded resolution
of singularities in arbitrary dimension. Indeed, by blowing up a finite number of points,
we may assume that h1,1(X) ≡ a1,1−1 (mod m) and X contains Pn−1. Now we claim
that we can construct an (n − 2)-dimensional subvariety Y in a blowup X ′ → X with
hp,q(X ′) ≡ hp,q(X) (mod m) such that hp,q(Y ) ≡ ap+1,q+1 − hp+1,q+1(X) (mod m).
Then the blowup X̃ → X ′ in Y has the required Hodge numbers.

To construct Y , first construct any smooth projective variety Z of dimension n − 2
with the correct outer Hodge numbers using Proposition 3.10. Then Z is birational
to a (possibly singular) hypersurface Z ′ ⊆ Pn−1. Embedded resolution of Z ′ ⊆ Pn−1

gives a birational map X ′ → X such that the strict transform of Z ′ is smooth, so Z ′

has the desired outer Hodge numbers by [CR11, Thm. 1]. By the induction hypothesis
we may blow up further to get the inner Hodge numbers we want. Repeating this
construction m − 1 more times, as usual, gives hp,q(X ′) ≡ hp,q(X) (mod m).

However, because resolution of singularities is currently unknown in positive charac-
teristic beyond dimension 3, we have developed the above approach using embedded
resolution of surfaces, Maruyama’s theory of elementary transformations of projective
bundles, and the fortuitous fact that the failure of Hodge symmetry is ‘generated’ by
surfaces (see also [vDdB21, Thm. 2]).

Remark 3.17. Both the proof of Theorem 3.2 above (replacing Lemma 3.13 by
an easy case of [PS19, Lem. 6]) and the alternative argument of Remark 3.16 using
resolution of singularities give new methods to prove the characteristic zero result
[PS19, Thm. 5].

Conversely, it is possible to adapt the methods of [PS19, §3] to prove Theorem 3.2,
using the subvarieties from [PS19, Lem. 6] as well as projective bundles over the
subvarieties from Lemma 3.13, but the analysis is a bit more intricate.

3.5. Polynomial relations

Corollary 3.18. There are no polynomial relations among the Hodge numbers of
smooth projective k-varieties of the same dimension besides the ones induced by Serre
duality.
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Proof. Using [PS19, Lem. 8], this follows from Theorem 3.1 in the same way as [PS19,
Cor. 3], except that we now consider the Hodge numbers hp,q with 0 ≤ p ≤ q ≤ n

and (p, q) ̸= (0, 0), (n, n).

Corollary 3.19. There are no polynomial relations among the inner Hodge numbers
of smooth projective k-varieties of any fixed birational equivalence class besides the
ones induced by Serre duality.

Proof. This follows from Theorem 3.2 in a similar fashion.
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4. On the degree of algebraic cycles on
hypersurfaces

Abstract

Let X ⊂ P4 be a very general hypersurface of degree d ≥ 6. Griffiths
and Harris conjectured in 1985 that the degree of every curve C ⊂ X

is divisible by d. Despite substantial progress by Kollár in 1991,
this conjecture is not known for a single value of d. Building on
Kollár’s method, we prove this conjecture for infinitely many d, the
smallest one being d = 5005. The set of these degrees d has positive
density. We also prove a higher-dimensional analogue of this result
and construct smooth hypersurfaces defined over Q that satisfy the
conjecture.

This chapter is based on [Pau22].

4.1. Introduction

In their famous work [GH85], Griffiths and Harris made five conjectures about curves
on a very general hypersurface X ⊂ P4 over C. The weakest one is:

Conjecture 4.1 (Griffiths–Harris). Let X ⊂ P4 be a very general hypersurface of
degree d ≥ 6. Then the degree of every curve C ⊂ X is divisible by d.



The conjecture was stated over C, but could be considered over other fields as
well. However, as we will see below, in the complex setting there is an intimate
connection between this conjecture and the failure of the integral Hodge conjecture on
X. Throughout the whole chapter, we thus work over the field of complex numbers,
which was also the setting considered by Griffiths and Harris.

Conjecture 4.1 would follow from the stronger conjectures in [GH85] that C is
algebraically or even rationally equivalent to a multiple of a plane section. Their
strongest conjecture, stating that C is a complete intersection with a surface in P4,
was disproven by Voisin [Voi89]. In contrast, Wu proved in [Wu90] that every curve
C ⊂ X of degree at most 2d − 2 is a complete intersection with a surface in P4. In
particular, the degree of every curve C ⊂ X is at least d. Nevertheless, Conjecture 4.1
is still open in any degree d.

More generally, one might conjecture:

Conjecture 4.2. Let n ≥ 1 be an integer, and let X ⊂ Pn+1 be a very general
hypersurface of degree d ≥ 2n. Then the degree of every positive-dimensional closed
subvariety Z ⊂ X is divisible by d.

Note that this conjecture is wrong if 1 < d < 2n because a hypersurface X ⊂ Pn+1

of degree d < 2n contains a line. The case n = 1 of this conjecture is trivial, and the
case n = 2 follows from the Noether–Lefschetz theorem [Lef24]. For n ≥ 3, however,
Conjecture 4.2 is not known for a single d yet.

4.1.1. Kollár’s method

For a very general hypersurface X ⊂ P4 of degree d, let us write

f3(d) = gcd{deg C | C ⊂ X curve} .

Conjecture 4.1 states that f3(d) = d for all d ≥ 6.

The Trento examples [K+91], mostly due to Kollár, achieve substantial progress
towards Conjecture 4.1 via specialization arguments. By degenerating a very general
hypersurface X ⊂ P4 into a singular projection of a smooth projective threefold Y ,
the following results are obtained:

(1) d | 6 · f3(d3) for all d ≥ 1 (Kollár, see also [SV05, section 2])
(2) d | 6 · f3(3d2) for all d ≥ 4 (Kollár)
(3) d | 2 · f3(6d) for all d ≥ 9 (van Geemen, improved by [DHS94])

These results naturally generalize to arbitrary dimension n ≥ 3 (see section 4.2), but
they do not prove Conjecture 4.2 for any d ≥ 2n.
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4.1.2. Main results

The main purpose of this chapter is to show the following:

Theorem 4.3. Let n ≥ 3 be an integer. Then there exists a set of degrees d with
positive density such that Conjecture 4.2 is true in degree d.

In particular, the case n = 3 proves the conjecture of Griffiths and Harris for infinitely
many degrees d. The smallest of them is d = 5005. Hence, d = 5005 is the first
degree where Conjecture 4.1 is currently known.

For a projective variety X, let us introduce the group

Z2c(X) = Hc,c(X,Z)
⟨alg. classes⟩ ,

which measures the failure of the integral Hodge conjecture on X in codimension c.
As a consequence of Theorem 4.3, we get:

Corollary 4.4. Let n ≥ 3 be an integer. Then there exists a set of degrees d with
positive density such that

Z2c(X) ∼= Z/d

for a very general hypersurface X ⊂ Pn+1 of degree d and for n
2 < c < n.

In particular, the integral Hodge conjecture fails for very general hypersurfaces
X ⊂ Pn+1 of these degrees d.

For n = 3, the previous result from [DHS94] (item (3) above) allows to disprove the
integral Hodge conjecture for a set of degrees with density 1

6 . With our approach,
we can actually show the failure of the integral Hodge conjecture for a set of degrees
with density 1:

Theorem 4.5. Let n ≥ 3 be an integer. Then there exists a set of degrees d with
density 1 such that the integral Hodge conjecture for very general hypersurfaces
X ⊂ Pn+1 of degree d is false in every codimension c with n

2 < c < n.

Theorems 4.3 and 4.5 as well as the known results (1), (2), and (3) concern very
general hypersurfaces. This might possibly exclude all hypersurfaces defined over
number fields. However, Totaro proved in [Tot13] that (1), (2), and (3) are in most
cases also valid for certain smooth hypersurfaces X ⊂ P4 defined over Q. Using
Totaro’s results, we show:
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Theorem 4.6. There exists a smooth hypersurface X ⊂ P4 of degree d ≥ 6 defined
over Q such that the degree of every curve C ⊂ XQ is divisible by d.

For example, one can choose d = 7 · 13 · 19 · 31 = 53599 (see Proposition 4.20).

4.1.3. General observations and notation

Let X ⊂ Pn+1 be a very general hypersurface of degree d and let α = c1(OX(1)) ∈
H1,1(X,Z) denote the hyperplane class.

By the Lefschetz hyperplane theorem, the restriction map

H i(Pn+1,Z) → H i(X,Z)

is an isomorphism for i < n. Therefore,

H2c(X,Z) = Hc,c(X,Z) = Z · αc for c < n
2 .

Hence, Conjecture 4.2 is true for subvarieties Z ⊂ X of codimension c < n
2 . Moreover,

Z2c(X) is trivial for c < n
2 .

For n
2 < c ≤ n, Poincaré duality implies that

H2c(X,Z) = Hc,c(X,Z) = Z · 1
d

αc for n
2 < c ≤ n.

Therefore, no topological obstructions on the degree of subvarieties Z ⊂ X of
codimension c with n

2 < c ≤ n exist. In this case, we can rephrase Conjecture 4.2
in terms of the group Z2c(X). Since αc is clearly algebraic, Z2c(X) is a quotient of
Z/d. The order of Z2c(X) is given by the greatest common divisor of the degrees of
all subvarieties Z ⊂ X of codimension c. Hence, Conjecture 4.2 in codimension c

for n
2 < c < n is equivalent to Z2c(X) ∼= Z/d. In particular, Theorem 4.3 implies

Corollary 4.4.

Note that it suffices to prove Conjecture 4.2 for curves C ⊂ X because every positive-
dimensional subvariety Z ⊂ X gives rise to a curve C ⊂ X of the same degree after
intersecting Z with a suitable linear subspace.

If X ⊂ Pn+1 is very general, the order of the group Z2n−2(X) only depends on n

and d. We set fn(d) := |Z2n−2(X)| for n ≥ 3 and d ≥ 1. In other words,

fn(d) = gcd{deg C | C ⊂ X curve} .

For n = 3, this agrees with the definition of f3(d) given earlier.

We know that fn(d) | d for all degrees d, and Conjecture 4.2 in degree d is equivalent
to fn(d) = d.
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4.1.4. Proof idea and overview

Looking at the existing results towards Conjecture 4.1, statement (3) seems to be
more powerful than (1) and (2). However, the main idea for proving Theorem 4.3 is
to combine (1), (2), and (3) in order to show d | f3(d) for certain degrees d. This is
based on the observation that d | fn(d1) and d | fn(d2) together imply d | fn(d1 + d2),
as can be seen by another degeneration argument.

In section 4.2, we develop higher-dimensional analogues of the Trento examples
[K+91]. These allow to carry out our approach in arbitrary dimension n ≥ 3.

In section 4.3, we will prove the following statement behind Theorem 4.3:

Proposition 4.7. Let n ≥ 3 be an integer. Then we have fn(d) = d if d is coprime
to n! and the largest prime power q dividing d satisfies((n

2
)

− 1
)

· qn +
(
n! −

(n
2
))

· qn−1 + (2n + 1) · n! ≤ d .

For n = 3, the smallest degree d with this property is

d = 5 · 7 · 11 · 13 = 5005 .

In section 4.4, we will see that the positive integers d fulfilling the condition in
Proposition 4.7 have positive density for all n ≥ 3, thus completing the proof of
Theorem 4.3.

Finally, we prove Theorem 4.5 in section 4.5 and Theorem 4.6 in section 4.6.

4.2. The Trento examples

In this section, we take a closer look at the Trento examples from [K+91] by general-
izing them to arbitrary dimension n ≥ 3.

All examples rely on the following lemma:

Lemma 4.8 (Kollár). Let n ≥ 3 be an integer. Suppose that there exists a smooth
projective variety Y of dimension n with a very ample line bundle L such that Ln = d

and k | B · L for every curve B ⊂ Y . Then we have

k | n! · fn(d) .
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Proof. We consider the embedding Y ⊂ PN given by the very ample line bundle L,
and take a general linear projection

π : Y → Pn+1 .

Then π(Y ) ⊂ Pn+1 is a hypersurface of degree Ln = d.

By [Mat73] (see also [BE10]), each fiber of π has at most n + 1 distinct points
(note that the fibers of π might have a much larger degree than n + 1 due to their
non-reduced scheme structure, but for our argument we only need that they consist of
at most n + 1 points topologically). Moreover, only finitely many fibers have exactly
n+1 distinct points. Hence, for every curve C ⊂ π(Y ), the curve B = π−1(C)red ⊂ Y

admits a finite surjective map π|B : B → C of degree at most n. Therefore, we have
B · L | n! · deg C and thus k | n! · deg C.

Now if X ⊂ Pn+1 is a very general hypersurface of degree d, every curve on X

specializes to a curve C ⊂ π(Y ) of the same degree. For more details on this
degeneration argument, see [SV05, section 2]. Since k | n! · deg C, it follows that
k | n! · fn(d).

Corollary 4.9 (Kollár). For all n ≥ 3 and d ≥ 1, we have

d | n! · fn(dn) .

In particular, we have d | fn(dn) if d is coprime to n!.

Proof. We apply Lemma 4.8 to Y = Pn and L = OPn(d).

Corollary 4.10 (Kollár). For all n ≥ 3 and d ≥ 4, we have

d | n! · fn
((n

2
)
dn−1) .

In particular, we have d | fn
((n

2
)
dn−1) if d is coprime to n!.

Proof. We take Y = S ×Pn−2 where S ⊂ P3 is a very general surface of degree d ≥ 4.
On Y , we consider the very ample line bundle

L = pr∗
1OS(1) ⊗ pr∗

2OPn−2(d) .

Then we have Ln =
(n

2
)
dn−1 (note that the factor

(n
2
)

is accidentally missing in
[K+91]). If B ⊂ Y is a curve, we obtain

B · L = (pr1)∗B · OS(1) + (pr2)∗B · OPn−2(d) ≡ 0 (mod d) ,

because d divides the degree of the curve pr1(B) ⊂ S by the Noether–Lefschetz
theorem [Lef24]. Therefore, Lemma 4.8 implies the result.
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Corollary 4.11 (van Geemen, Debarre–Hulek–Spandaw). For all n ≥ 3 and d ≥
2n + 1, we have

d | (n − 1)! · fn(n! · d) .

In particular, we have d | fn(n! · d) if d is coprime to (n − 1)!.

Proof. Let (Y, L) be a very general polarized Abelian variety of dimension n and
type (1, . . . , 1, d). Then we have Ln = n! · d. It was shown in [DHS94] that the line
bundle L is very ample.

Since L is of type (1, . . . , 1, d), we have

c1(L) = dx1 ∧ dx2 + · · · + dx2n−3 ∧ dx2n−2 + d · dx2n−1 ∧ dx2n ∈ H2(Y,Z)

for a suitable basis dx1, . . . , dx2n of H1(Y,Z). From this we see that

c1(L)n−1

(n − 1)! = dx1 ∧ dx2 ∧ · · · ∧ dx2n−3 ∧ dx2n−2 + d · . . . ∈ H2n−2(Y,Z)

is not divisible by any integer larger than 1. If Y is very general, the algebraic
classes in H2n−2(Y,Z) are rational multiples of c1(L)n−1, and thus integral multiples
of c1(L)n−1/(n − 1)!. Therefore, the degree of every curve B ⊂ Y is divisible by
Ln/(n − 1)! = nd. Hence, Lemma 4.8 gives nd | n! · fn(n! · d).

4.3. Proof of Proposition 4.7

We combine Corollaries 4.9, 4.10, and 4.11 via the following simple observation:

Lemma 4.12. If d | fn(d1) and d | fn(d2), then d | fn(d1 + d2).

Proof. Let C ⊂ X be a curve on a very general hypersurface X ⊂ Pn+1 of degree
d1 +d2. By the same degeneration argument which we used in the proof of Lemma 4.8,
every hypersurface X ⊂ Pn+1 of degree d1+d2 contains a curve of the same degree as C.
In particular, we can choose X = X1∪X2 to be the union of very general hypersurfaces
X1, X2 ⊂ Pn+1 of degrees d1 and d2, respectively. Then every irreducible component
of a curve C ⊂ X1 ∪ X2 lies on X1 or X2. By assumption, the degrees of these
components are divisible by d. We conclude that d | deg C.

Now we can prove Proposition 4.7.
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Proof of Proposition 4.7. Since d is a product of pairwise coprime powers of primes,
it suffices to show q | fn(d) for every prime power q | d. By assumption, we have((n

2
)

− 1
)

· qn +
(
n! −

(n
2
))

· qn−1 + (2n + 1) · n! ≤ d . (4.1)

We choose i ∈
{
0, . . . ,

(n
2
)

− 1
}

such that

d ≡ i · qn (mod
(n

2
)
) .

This is possible because
(n

2
)

divides n! and q is coprime to n!.

Then we choose j ∈ {0, . . . , n! − 1} such that

d ≡ i · qn + j · qn−1 (mod n!) .

Our choice of i implies that j is divisible by
(n

2
)
, so we have j ≤ n! −

(n
2
)
.

By our choice of j, there exists an integer k such that

d = i · qn + j · qn−1 + k · n! .

Since q | d, we have q | k. And from (4.1) we get k ≥ 2n + 1.

Now we have:

• q | fn(qn) by Corollary 4.9
• q | fn(

(n
2
)
qn−1) by Corollary 4.10

• k | (n − 1)! · fn(k · n!) by Corollary 4.11 and thus q | fn(k · n!)

Combining these results via repeated usage of Lemma 4.12, we obtain

q | fn

(
i · qn + j(n

2
) ·
(n

2
)
qn−1 + k · n!

)
= fn(d) .

Remark 4.13. Using only Corollaries 4.9 and 4.11, one can show a weaker statement
where (4.1) is replaced by the assumption

(n! − 1) · qn + (2n + 1) · n! ≤ d .

It turns out that this stronger condition results in a set of degrees d with the same
density. Therefore, Corollary 4.10 is not strictly necessary to obtain Theorem 4.3.
However, only together with Corollary 4.10 we can prove Conjecture 4.1 for d = 5005.
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4.4. Some analytic number theory

A set A of positive integers has positive density if

lim inf
m→∞

|A ∩ {1, . . . , m}|
m

> 0 .

In this section, we want to prove the following:

Proposition 4.14. Let n ≥ 1 be an integer and λ > 0 a real number. Then the
positive integers d coprime to n! such that the largest prime power dividing d is not
larger than λ · d1/n have positive density.

Together with Proposition 4.7, this will complete the proof of Theorem 4.3, since for
d ≫ 0 the condition q ≤

(n
2
)−1/n

d1/n implies((n
2
)

− 1
)

· qn +
(
n! −

(n
2
))

· qn−1 + (2n + 1) · n! ≤ d ,

so Proposition 4.7 applies to a set of degrees d with positive density.

We use the following easy lemma on the distribution of prime powers:

Lemma 4.15. Let Π(m) denote the number of prime powers ≤ m. Then

Π(m)
m

m→∞−→ 0 .

Proof. By the prime number theorem, we have

π(m)
m

m→∞−→ 0 ,

where π(m) counts the prime numbers ≤ m. Now if pe ≤ m is a prime power with
e ≥ 2, we have e ≤ log2 m and p ≤

√
m, so we conclude by noting that

log2 m ·
√

m

m
m→∞−→ 0 .

We also need the following consequence of Mertens’ theorem:

Lemma 4.16. We have ∑
x1/n<p≤x

1
p

x→∞−→ log n ,

where the sum runs only over prime numbers p.
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Proof. By [Mer74], there exists a constant C such that
∑
p≤x

1
p

− log log x
x→∞−→ C .

Since log log x − log log x1/n = log n, we conclude that
∑

x1/n<p≤x

1
p

=
∑
p≤x

1
p

−
∑

p≤x1/n

1
p

x→∞−→ log n .

Now we can prove Proposition 4.14.

Proof of Proposition 4.14. Let α > 1 be a real number. Dickman proved in [Dic30]
that the positive integers d whose largest prime divisor is not larger than d1/α have
density ρ(α), where ρ denotes the Dickman function. More generally, this result
was proven for arithmetic progressions in [Buc49]. Therefore, the positive integers d

coprime to n! whose largest prime divisor is not larger than d1/α have density

φ(n!)
n! · ρ(α) ,

where φ denotes Euler’s totient function. Since ρ is continuous, it follows that the
positive integers d coprime to n! whose largest prime divisor is not larger than λ ·d1/n

have density φ(n!)
n! · ρ(n) > 0.

In other words, Proposition 4.14 holds if we replace ‘prime power’ by ‘prime number’.
Hence, it suffices to show that the positive integers d divisible by a prime power
q = pe > λ · d1/n with e ≥ 2 have density 0.

For a given x, let us consider the number N(x) of positive integers d ≤ x with this
property. Any such d can be written as

d = q · r ,

where q = pe ≥ λ · d1/n is a prime power with e ≥ 2. For fixed q ≤ x1/n, there are at
most λ−nqn−1 possibilities for d because

r = d

q
≤ λ−nqn

q
= λ−nqn−1 .

For fixed q > x1/n, there are at most x
q possibilities for d because

r = d

q
≤ x

q
.
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Together we obtain the upper bound

N(x) ≤ λ−n ·
∑

q≤x1/n

qn−1 + x ·
∑

x1/n<q≤x

1
q

,

where both sums run only over prime powers q = pe with e ≥ 2.

Using Lemma 4.15, we get

1
x

·
∑

q≤x1/n

qn−1 ≤ 1
x

· Π(x1/n) ·
(
x1/n

)n−1
= Π(x1/n)

x1/n

x→∞−→ 0 ,

so in order to prove N(x)
x → 0 for x → ∞, it remains to show that∑

x1/n<q≤x

1
q

x→∞−→ 0 .

For q = pe ≤ x, we have e ≤ log2 x and thus

lim sup
x→∞

∑
x1/n<q≤x

1
q

= lim sup
x→∞

⌊log2 x⌋∑
e=2

∑
x1/n<pe≤x

1
pe

≤ lim sup
x→∞

 n∑
e=2

∑
x1/en<p≤x1/e

x− e−1
en

p
+

⌊log2 x⌋∑
e=n+1

x1/e

x1/n

 .

Here we used 1
pe = p−(e−1)

p ≤ x− e−1
en

p for p > x1/en if 2 ≤ e ≤ n, and 1
pe ≤ 1

x1/n

for p > x1/en if e ≥ n + 1. Applying Lemma 4.16 for each 2 ≤ e ≤ n, and using
x1/e ≤ x1/(n+1) for e ≥ n + 1, we obtain

· · · ≤ lim sup
x→∞

(
n∑

e=2

log n

x
e−1
en

+ log2 x

x
1

n(n+1)

)
= 0 .

Remark 4.17. The proof shows that the density in Theorem 4.3 amounts to

φ(n!)
n! · ρ(n) .

For example, the density for n = 3 is 1
3 · ρ(3) ≈ 1.6%.

4.5. Failure of the integral Hodge conjecture

By the work of Kollár [K+91], hypersurfaces provide an example for varieties where the
integral Hodge conjecture fails due to a non-torsion cohomology class. Theorem 4.5
says that this counterexample works for almost all degrees d (in the sense of density).
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Proof of Theorem 4.5. The failure of the integral Hodge conjecture in degree d is
equivalent to fn(d) ̸= 1. Hence, we need to show that the positive integers d with
fn(d) ̸= 1 have density 1. If d has a prime divisor p coprime to n! such that((n

2
)

− 1
)

· pn +
(
n! −

(n
2
))

· pn−1 + (2n + 1) · n! ≤ d ,

then the proof of Proposition 4.7 shows that p | fn(d). Therefore, for every prime
p > n all sufficiently large multiples d of p satisfy fn(d) ̸= 1.

For a given ε > 0, we can find distinct primes p1, . . . , pN > n such that

1
p1

+ · · · + 1
pN

>
1
ε

since the sum of the reciprocals of all primes diverges. We know from the previous
paragraph that for d ≫ 0, we might have fn(d) = 1 only if d is not divisible by any
of the primes p1, . . . , pN . Hence, the density of these d is at most(

1 − 1
p1

)
· · ·
(

1 − 1
pN

)
<

1(
1 + 1

p1

)
· · ·
(
1 + 1

pN

) <
1

1
p1

+ · · · + 1
pN

< ε .

This concludes the proof.

Remark 4.18. For any degree d ≥ 1, there exist special smooth hypersurfaces
X ⊂ Pn+1 of degree d which do satisfy the integral Hodge conjecture in every
codimension c with n

2 < c < n. For example, we can take the Fermat hypersurface

{xd
0 + · · · + xd

n+1 = 0} ⊂ Pn+1 ,

since it contains an (n − c)-dimensional linear subspace for any n
2 < c < n.

Remark 4.19. There are infinitely many degrees d for which we are not able to
disprove the integral Hodge conjecture. In particular, this problem remains open
when d is a prime number, in which case the failure of the integral Hodge conjecture
is equivalent to Conjecture 4.2.

4.6. Example over Q

The basic idea in [Tot13] is to replace the original degeneration arguments with
degenerations to positive characteristic. To prove Theorem 4.6, we apply this idea to
the proof of Proposition 4.7 and use some of Totaro’s results.
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Proposition 4.20. There exists a smooth hypersurface X ⊂ P4 of degree d =
7 · 13 · 19 · 31 = 53599 defined over Q such that the degree of every curve C ⊂ XQ is
divisible by d.

Note that every curve on XC specializes to a curve C ⊂ XQ of the same degree (by
viewing C as the algebraic closure of a purely transcendental field extension of Q),
hence XC satisfies the conclusion of the conjecture of Griffiths and Harris.

Proof of Proposition 4.20. We will show the following lemma:

Lemma 4.21. Let q be any of the four prime divisors of d. Then there exists a
prime p and a hypersurface Y ⊂ P4

Fp
of degree d such that the degree of every curve

C ⊂ YFp
is divisible by q. Moreover, p can be chosen such that finitely many given

primes are avoided.

Once this lemma is proven, we proceed as follows: We ensure that the primes p for each
prime divisor q | d are pairwise different. Then we use the Chinese remainder theorem
to construct a smooth hypersurface X ⊂ P4 defined over Q that simultaneously
specializes to all four hypersurfaces Y ⊂ P4

Fp
from Lemma 4.21. This X satisfies our

claim.

Proof of Lemma 4.21. Since q ≡ 1 (mod 6), we can write d = q3+6k for some integer
k. Note that k ≥ 38. As in the proof of Lemma 4.12, we want to take Y = Y1 ∪ Y2,
where Y1, Y2 ⊂ P4

Fp
are two hypersurfaces of degrees q3 and 6k, respectively, such

that every curve C ⊂ (Yi)Fp
has degree divisible by q.

We first construct Y1. A priori, [Tot13, Corollary 4.2] only gives hypersurfaces
Y1 ⊂ P4 over Fp with this property for every p > q3. However, as in the proofs of
[Tot13, Lemma 5.1] and [Tot13, Theorem 6.1], we can apply [Tot13, Lemma 4.3]
to P3

Q (polarized by OP3(q)) to get a rational map to P4
Z and obtain hypersurfaces

Y1 ⊂ P4 over Fp after excluding finitely many primes p.

Now we construct Y2. The proof of [Tot13, Theorem 6.1] yields a prime p and a
hypersurface Y2 ⊂ P4

Fp
of degree 6k such that k | 6 · deg C for every curve C ⊂ (Y2)Fp

.
Since k is a multiple of q and q is coprime to 6, it follows that q | deg C. Furthermore,
we can guarantee that p is different from finitely many given primes (including also
the primes where the construction of Y1 does not work) by doing the argument of
[Tot13, Theorem 6.1] over Z[1/P ] instead of Z, where P is the product of these
finitely many primes.

Remark 4.22. For simplicity, we gave only one specific example over Q. The above
argument obviously works for other values than d = 53599 as well.
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5. On a unirational counterexample to the
integral Hodge conjecture

Abstract

Schreieder constructed the first example of a unirational fourfold
where the integral Hodge conjecture fails in codimension 2. We take
a new look at his example and describe it from a different, more
geometric perspective using Borel–Moore homology. Our approach
is aimed towards deciding whether the non-algebraic Hodge class
on this variety is a torsion class.

5.1. Introduction

Let X be a smooth projective variety over C. The integral Hodge conjecture in
codimension k says that the cycle class map

CHk(X) → Hk,k(X,Z) = {µ ∈ H2k(X,Z) | µC ∈ Hk,k(X)}

is surjective. This is true for k = 1 by the Lefschetz (1, 1) theorem.

After Atiyah and Hirzebruch [AH61] constructed the first counterexamples to this
statement (for k = 2), the failure of the integral Hodge conjecture has been extensively
studied for different classes of algebraic varieties, see e. g. [K+91, Tot97, SV05, CTV12,
Tot13, Sch19, BO20, OS20, BW20a, BW20b, Dia20]. There are two fundamentally
different ways how the integral Hodge conjecture can fail:

(1) There exists a non-algebraic class µ ∈ H2k(X,Z) such that m · µ = 0 for some
positive integer m.



(2) There exists a non-algebraic class µ ∈ H2k(X,Z) such that m · µ is algebraic
for some positive integer m, but m · (µ + δ) ̸= 0 for all algebraic classes
δ ∈ H2k(X,Z) and all positive integers m.

Assuming the (rational) Hodge conjecture is true, every counterexample arises in one
of these two ways. Let us say that counterexamples of the form (1) are of torsion
type and those of the form (2) are of non-torsion type.

The original counterexample in [AH61] was of torsion type. The first non-torsion
counterexample was found by Kollár [K+91] and is given by very general hypersurfaces
X ⊂ P4 of certain degrees d ≥ 6 (the working values for d have density 1, see [Pau22]
or chapter 4), where we have H4(X,Z) ∼= Z. These threefolds are of general type,
which leads to the question whether the integral Hodge conjecture is true for threefolds
of Kodaira dimension < 3.

Indeed, this is the case for Kodaira dimension −∞ (i. e. for uniruled threefolds), as
shown by Voisin [Voi06]. In the same paper, she proved the integral Hodge conjecture
for threefolds X with ωX

∼= OX and H2(X, OX) = 0. Grabowski [Gra04] gave a
proof for abelian threefolds. Totaro [Tot21] generalized the previous two results to
all threefolds X of Kodaira dimension 0 with H0(X, ωX) ̸= 0. In contrast, Benoist
and Ottem [BO20] constructed counterexamples for any Kodaira dimension ≥ 0.

One commonly introduces the group

Z2k(X) = Coker(CHk(X) → Hk,k(X,Z))

to measure the failure of the integral Hodge conjecture in codimension k. Since
Z4(X) is easily seen to be a birational invariant, it is an interesting question whether
there exist rationally connected or even unirational counterexamples to the integral
Hodge conjecture in codimension 2. By the aforementioned result of Voisin [Voi06],
such examples would need to have dimension at least 4.

Colliot-Thélène and Voisin [CTV12] gave a description of Z4(X) in terms of unrami-
fied cohomology. If CH0(X) is supported on a surface, we have

Z4(X)[m] ∼= H3
nr(X,Z/m)

for all integers m ≥ 2. Using this, it follows that the integral Hodge conjecture fails
for a unirational sixfold constructed by Colliot-Thélène and Ojanguren [CTO89].
Schreieder [Sch19] was finally able to construct such unirational counterexamples in
the smallest possible dimension 4.

Since Schreieder’s argument relies on the abstract description of Z4(X)[2] via un-
ramified cohomology, it is unclear to which of the two possible categories his counter-
example belongs, i. e. whether it is of torsion or non-torsion type. In this chapter,
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we carry out the first steps towards answering this question. To this end, we per-
form a careful geometric study of the non-zero class in H3

nr(X,Z/2) constructed by
Schreieder.

In [CTV12], the following question is asked:

Des modèles lisses des variétés considérées étant difficiles à construire, les
éléments non triviaux correspondants du groupe Z4(X), c’est-à-dire des
classes de Hodge entières non algébriques, sont difficiles à analyser. Ces
classes proviennentelles, comme c’est le cas dans les exemples d’Atiyah–
Hirzebruch, de classes de torsion dans H4(X,Z) ?

In English:

Since smooth models of the considered varieties are difficult to construct,
the corresponding non-trivial elements of the group Z4(X), i. e. the non-
algebraic integral Hodge classes, are difficult to analyse. Do these classes,
as in the Atiyah–Hirzebruch examples, originate from torsion classes in
H4(X,Z)?

While we focus on the fourfold from [Sch19] here, our viewpoint is in principle also
applicable to the sixfold from [CTO89].

Schreieder’s counterexample is described by a singular birational model, which is a
conic bundle over P3. As remarked by Colliot-Thélène and Voisin, one difficulty in
answering the above question lies in the construction of a smooth resolution. With a
small trick, we can compare the conic bundle to a much simpler one that admits a
smooth resolution by a hypersurface in a multiweighted projective space. Although
the simplified bundle is not birational to the original one, they agree on a subset
on which a natural representative of the considered unramified cohomology class is
supported.

Arguments with unramified cohomology are usually rather abstract. In this chapter,
we follow a different approach: Using the setup of [Sch23], we identify unramified
cohomology classes with their duals in Borel–Moore homology. This allows us to
work with them very concretely, e. g. we can explicitly provide real submanifolds
representing unramified cohomology classes. By [Sch23, Theorem 7.7], the question
whether the corresponding non-algebraic integral Hodge class is torsion reduces to
the problem whether Schreieder’s class in H3

nr(X,Z/2) extends to a global class in
H3(X,Z/2). Our more analytic/geometric approach could be compared in style
to [AM72, § 2]. There, the easier case of H2

nr(X,Z/2) is investigated, where X is
birational to a certain conic bundle over P2.
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Along the lines, we obtain a geometric description of the map

KM
i (C(X)) → H i(C(X),Z)

from Milnor K-theory to Galois cohomology, which might be of independent interest.
As this description shows, a given symbol {f1, . . . , fi} actually induces a well-defined
class in H i(U,Z), where U ⊂ X is the complement of the zeros and poles of the
rational functions f1, . . . , fi.

After fixing canonical representatives for the Borel–Moore homology classes dual
to (f) ∈ H1(U,Z) for f ∈ C(X)∗, an essential preparation for the later arguments
constitutes of geometric descriptions of certain Borel–Moore chains whose boundaries
“explain” the relations (fg) = (f) + (g) and (f) ∪ (1 − f) = 0 from Milnor K-theory.
This is done in section 5.2.

In section 5.3, we construct a smooth resolution of Schreieder’s conic bundle. This
is done such that we can often work on the resolution of a much simpler conic
bundle later. In section 5.4, we carry out the crucial computation in Borel–Moore
homology which geometrically explains the unramifiedness of the considered class.
This allows to give an explicit description of an algebraic cycle representing twice
the non-algebraic Hodge class in this counterexample (see Corollary 5.11).

The question whether Schreieder’s counterexample is of torsion type remains open.
We hope that the results in this chapter help to answer this question in the future.

5.2. Unramified cohomology and Borel–Moore homology

Many equivalent definitions of unramified cohomology exist, see e. g. [CT95, The-
orem 4.1.1]. In the following, we adhere to a new viewpoint introduced in [Sch23],
which turns out to be very fruitful.

Let X be a smooth projective variety over C. For an abelian group A, the direct
limit

H i(C(X), A) := lim−→
U

H i(U, A)

over all Zariski open subsets ∅ ̸= U ⊂ X agrees with the Galois cohomology of
C(X)/C. Here, H i(U, A) denotes singular cohomology with respect to the analytic
topology. This interplay between the Zariski topology and the analytic topology on
X will play an important role.
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The subgroup H i
nr(X, A) ⊂ H i(C(X), A) consists by definition of the elements which

can be represented by a cohomology class on a big open subset, i. e. a Zariski open
subset U ⊂ X such that codimX(X \ U) ≥ 2. In other words,

H i
nr(X, A) := Im

(
H i(F1X, A) → H i(F0X, A)

)
where H i(FjX, A) denotes the direct limit of H i(U, A) over all Zariski open subsets
U ⊂ X such that codimX(X \ U) > j, see [Sch23, Definition 5.1].

The obstruction for extending a class in H i(C(X), A) over the generic point of a prime
divisor D ⊂ X is given by the residue morphism ∂D : H i(C(X), A) → H i−1(C(D), A).
This yields the alternative description

H i
nr(X, A) = Ker

(
H i(C(X), A) →

⊕
D⊂X

H i−1(C(D), A)
)

.

More precisely, there exists a long exact sequence

· · · → H i(F1X, A) → H i(F0X, A) →
⊕

D⊂X

H i−1(F0D, A) → H i+1(F1X, A) → · · · ,

see [Sch23, Lemma 5.8] for more details and a generalization.

One can show that H i
nr(X, A) is a stable birational invariant. This makes unramified

cohomology a very useful tool for proving (stable) irrationality of algebraic varieties.

Since X is clearly a big open subset of itself, we have a map

H i(X, A) → H i
nr(X, A) .

This map is an isomorphism for i = 1 and surjective for i = 2 (by the above long
exact sequence and by the fact that H i(FjX, A) = H i(X, A) for j ≥ i

2 , see [Sch23,
Corollary 5.10]). For i ≥ 3, however, this map is in general neither injective nor
surjective.

The unramified cohomology groups H i
nr(X, A) seem to become increasingly difficult

to understand for increasing i. As we have just seen, H1
nr(X, A) ∼= H1(X, A). For A =

Z/m, we further have H2
nr(X,Z/m) ∼= Br(X)[m], see e. g. [CT95, Proposition 4.2.3].

Colliot-Thélène and Voisin [CTV12] found the following surprising relation between
the third unramified cohomology group H3

nr(X,Z/m) and the failure of the integral
Hodge conjecture for X:

Z4(X)[m] ∼=
H3

nr(X,Z/m)
H3

nr(X,Z) ⊗ Z/m
(5.1)
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If CH0(X) is supported on a surface, H3
nr(X,Z) vanishes and we have Z4(X)[m] ∼=

H3
nr(X,Z/m).

In [Sch23], Schreieder recently gave a more elementary proof of (5.1) and also
obtained descriptions of Z2k(X)[m] for higher codimensions k in terms of refined
unramified cohomology. As shown in [Sch23, Theorem 7.7], the image of the map
H4(X,Z)[m] → Z4(X)[m] corresponds via the isomorphism (5.1) to the image of the
map H3(X,Z/m) → H3

nr(X,Z/m) introduced above. Hence, if the integral Hodge
conjecture in codimension 2 on X is disproven via a non-zero class α ∈ H3

nr(X,Z/m),
the question whether this represents a counterexample of torsion type amounts to
the question whether α, which is known to be liftable to a big open subset U ⊂ X,
even lifts to all of X (but note that a global lift of α needs to agree with a given lift
to a big open subset U ⊂ X only on a non-empty open subset that is not necessarily
big).

How can we explicitly describe classes in H i
nr(X,Z/m)? We can construct elements in

H i(C(X),Z/m) as an i-fold cup product of classes in H1(C(X),Z/m). By Hilbert’s
Theorem 90, the latter group is just C(X)∗ ⊗Z/m. In fact, due to Voevodsky’s proof
[Voe03] of the Bloch–Kato conjecture, the map

(C(X)∗)⊗i ⊗ Z/m → H i(C(X),Z/m)

descends to an isomorphism

KM
i (C(X)) ⊗ Z/m

∼=→ H i(C(X),Z/m) .

Here, KM
• (C(X)) denotes Milnor K-theory of the field C(X), i. e. the graded Z-algebra

generated by the symbols {a} for a ∈ C(X)∗ with the relations {ab} = {a} + {b} for
a, b ∈ C(X)∗ and {a} · {1 − a} = 0 for 1 ̸= a ∈ C(X)∗.

As we will see next, this algebraic description of H i(C(X),Z/m) has a nice geometric
interpretation if we regard elements of H i(C(X),Z/m) as singular cohomology classes
on a Zariski open subset U ⊂ X.

Let n = dim X. Since X is a compact manifold of dimension 2n, we have

H i(X, A) ∼= H2n−i(X, A)

by Poincaré duality. Unfortunately, classical Poincaré duality does not hold for
the Zariski open subsets U ⊊ X anymore, as they are not compact in the analytic
topology. To accommodate this, we can replace singular homology by Borel–Moore
homology HBM

j (X, A), which agrees with Hj(X, A) if X is compact. The Borel–Moore
homology groups HBM

j (X, A) are defined as the homology of the chain complex

CBM
0 (X) ⊗ A → CBM

1 (X) ⊗ A → CBM
2 (X) ⊗ A → · · · ,
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where CBM
j (X) differs from the classical Cj(X) in singular homology only by allowing

locally finite chains instead of just finite chains of j-simplices on X. Then we have

H i(X, A) ∼= HBM
2n−i(X, A)

even if X is not compact. However, it is still important here for X to be smooth.

Unlike in singular homology, pushforwards in Borel–Moore homology do not exist
for arbitrary morphisms. However, similar to Chow groups, there exist pushforwards
along proper morphisms and pullbacks along flat morphisms, see e. g. [Ful98, § 19.1].

Putting everything together, we have

H i
nr(X, A) ∼= Im

(
HBM

2n−i(F1X, A) → HBM
2n−i(F0X, A)

)
,

where HBM
2n−i(FjX, A) denotes the direct limit of HBM

2n−i(U, A) over all Zariski open
subsets U ⊂ X such that codimX(X \ U) > j.

Using Poincaré duality, the cup product on singular cohomology induces an intersec-
tion pairing

∩ : HBM
i (X, A) ⊗ HBM

j (X, A) → HBM
i+j−2n(X, A) .

If the real submanifolds M1, M2 ⊂ X intersect transversely, we have

[M1] ∩ [M2] = [M1 ∩ M2]

for the corresponding classes in Borel–Moore homology with Z/2 coefficients (for
general coefficients, one would need to take orientations into account). Even if the
intersection is not transversal, [M1] ∩ [M2] can be represented by a cycle supported
on M1 ∩ M2.

A nice property of Borel–Moore homology is the existence of a long exact sequence

· · · → HBM
j (Z, A) → HBM

j (X, A) → HBM
j (U, A) → HBM

j−1(Z, A) → · · ·

for a Zariski open subset U ⊂ X with complement Z := X \ U , see e. g. [Ful98,
§ 19.1]. Although the sequence

0 → CBM
j (Z) → CBM

j (X) → CBM
j (U)

is in general not exact on the right, all Borel–Moore chains on a Zariski open subset
U ⊂ X appearing in this chapter can be represented by a chain on X. Such chain on
X represents a cycle on U if and only if its boundary is supported on X \ U .
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Figure 5.1.: Singular versus Borel–Moore homology of P1 \ {0, ∞}

Now we discuss a simple example of Borel–Moore homology, which is highly relevant
for our later constructions. Let us consider U = P1 \ {0, ∞}, which is topologically a
2-punctured 2-sphere (see Figure 5.1). We have

H1(U,Z) ∼= Z and HBM
1 (U,Z) ∼= Z ,

but with entirely different generators: H1(U,Z) is generated by the class of the
equator (red line in Figure 5.1), onto which U retracts. However, this class is
trivial in Borel–Moore homology, as it is the boundary of each of the two punctured
hemispheres. Instead, HBM

1 (U,Z) is generated by the class of any curve connecting 0
and ∞ (blue line in Figure 5.1). This does not give a well-defined class in singular
homology because it cannot be represented by a finite chain of 1-simplices on U .
After identifying the C-points of P1 with C ∪ {∞}, we can explicitly represent this
generator by the oriented interval [0, ∞] ∈ CBM

1 (P1), containing the positive real
numbers, with boundary ∞−0. This will play a key role in the geometric description
of the norm residue map

KM
i (C(X)) → lim−→

U

HBM
2n−i(U,Z) .

For simplicity, let us work with Z/2 coefficients in the following, which will also
be what we need later in section 5.4. Then we do not need to take orientations
into account and can associate a chain in CBM

j (X) ⊗ Z/2 to any real submanifold
(possibly with boundary) of X. However, by tracking orientations, it is possible to
extend the subsequent statements in this section to integral coefficients.

Let f ∈ C(X)∗ be a non-constant rational function. Equivalently, f is a dominant
rational map f : X 99K P1, or a flat morphism f : U → P1 \ {0, ∞} on a Zariski open
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subset ∅ ̸= U ⊂ X. Concretely, we can take U to be the complement of the zeros
and poles of X. The unique generator of HBM

1 (P1 \ {0, ∞},Z/2) ∼= Z/2 pulls back
to a class (f) ∈ HBM

2n−1(U,Z/2). By functoriality of the isomorphism from Hilbert’s
Theorem 90, the image of (f) in HBM

2n−1(F0X,Z/2) ∼= H1(C(X),Z/2) ∼= C(X)∗ ⊗Z/2
agrees with f itself.

For f1, . . . , fi ∈ C(X)∗, we write

(f1, . . . , fi) := (f1) ∩ · · · ∩ (fi) ∈ HBM
2n−i(U,Z/2)

where U ⊂ X is the complement of the zeros and poles of f1, . . . , fi, i. e. we have
f1, . . . , fi ∈ O∗

X(U).

If we choose the chain [0, ∞] ∈ CBM
1 (P1) ⊗ Z/2 from above as a representative for

the generator of HBM
1 (P1 \ {0, ∞},Z/2), we therefore get a canonical chain

C(f) := f−1(0, ∞) ∈ CBM
2n−1(X) ⊗ Z/2

representing (f), where the closure is taken in the analytic topology. Its boundary is
supported on the zeros and poles of f .

In the special case where the zeros of f do not intersect the poles of f , the rational
function f defines a flat morphism f : X → P1 and we simply have

C(f) = f−1[0, ∞] ∈ CBM
2n−1(X) ⊗ Z/2 .

In fact, C(f) always contains the zeros and poles of f . Hence, if we regard f−1(0)
and f−1(∞) by abuse of notation as the union of prime divisors appearing with
positive/negative coefficient in the divisor associated to f , we also have C(f) =
f−1[0, ∞] in the general case, even if f−1(0) and f−1(∞) are not disjoint.

Lemma 5.1. Let f, g ∈ C(X)∗ with f + g = −1. Then C(f) ∩ C(g) is supported on
f−1(∞) = g−1(∞). In particular, (f) ∩ (g) = 0 ∈ HBM

2n−2(U,Z/2) where ∅ ≠ U ⊂ X

is chosen such that f, g ∈ O∗
X(U).

Proof. Suppose we have x ∈ C(f) ∩ C(g) such that x is not a pole of f (and hence not
of g). Then f(x) ∈ [0, ∞) and g(x) ∈ [0, ∞) are real numbers ≥ 0. This contradicts
f(x) + g(x) = −1.

This proves compatibility with the corresponding relation {f, g} = 0 in Milnor
K-theory. Note that the usual definition of Milnor K-theory demands this relation
for f + g = 1 instead (which does not really make a difference because {−1} =
2 · {

√
−1} = 0 modulo 2). In this case, our chosen representatives C(f) and C(g)

would not necessarily be disjoint on a Zariski open subset, and it would first require
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T (f, g)

C(f)

C(g)

C(fg)

Figure 5.2.: Proof of Lemma 5.2

chains in CBM
2n (X) ⊗Z/2 to “move” them before we can show (f) ∩ (g) = 0. However,

it turns out that during our computations in section 5.4 we are directly in the
situation of Lemma 5.1.

To state the next lemma, let us introduce the complex argument

arg : C∗ → [0, 2π) .

Then C(f) is given by {arg f = 0} on the Zariski open subset where f is invertible.

Lemma 5.2. Let f, g ∈ C(X)∗. On the Zariski open subset ∅ ≠ U ⊂ X where f and
g are invertible, the chain C(f)+C(g)−C(fg) is the boundary of the real submanifold

T (f, g) := {arg f + arg g ≤ 2π} ∈ CBM
2n (U) ⊗ Z/2 .

In particular, (f) + (g) = (fg) ∈ HBM
2n−1(U,Z/2).

Proof. By abuse of notation, let us pretend that [0, 2π) has the quotient topology
of R/2πZ (this would be a more natural choice for the codomain of arg, but would
not allow to write down the inequality defining T (f, g)). Then the pair (arg f, arg g)
defines a continuous map from U to the torus [0, 2π) × [0, 2π). Clearly, the boundary
of the triangle {x + y ≤ 2π} is given by the three lines {x = 0}, {y = 0}, and
{x + y = 2π}, see Figure 5.2. Hence, the claim follows by pulling back to U , since
arg(fg) = 0 is equivalent to arg f + arg g = 2π (up to the subset {arg f = arg g = 0}
of real codimension 2).

This proves compatibility with the corresponding relation {fg} = {f}+{g} in Milnor
K-theory.
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Q(f, g)

C(fg2)

C(f)

Figure 5.3.: Proof of Corollary 5.3

As a consequence of Lemma 5.1 and 5.2, there is a well-defined map

KM
i (C(X)) ⊗ Z/2 → lim−→

U

HBM
2n−i(U,Z/2)

sending {f} to the class of C(f). More precisely, the image of a symbol {f1, . . . , fi}
lies in HBM

2n−i(U,Z/2), where U ⊂ X is the complement of the zeros and poles of
f1, . . . , fi.

For our computation in section 5.4, we will use the explicit descriptions of chains like
T (f, g) that correspond to relations in Milnor K-theory between the classes of our
chosen system of canonical representatives. The following consequence of Lemma 5.2
will appear repeatedly:

Corollary 5.3. Let f, g ∈ C(X)∗. On the Zariski open subset ∅ ≠ U ⊂ X where f

and g are invertible, the chain C(f) − C(fg2) is the boundary of the real submanifold

Q(f, g) :=
{

π − 1
2 arg f ≤ arg g ≤ 2π − 1

2 arg f
}

∈ CBM
2n (U) ⊗ Z/2 .

In particular, (f) = (fg2) ∈ HBM
2n−1(U,Z/2).

Proof. By Lemma 5.2, C(fg2) − C(f) is the boundary of T (f, g) + T (fg, g). After a
subdivision into smaller triangles, this sum turns out to be equal to Q(f, g) modulo 2.
Alternatively, one could directly compute the boundary of Q(f, g) to obtain the
result, see Figure 5.3.

5.3. A smooth resolution of Schreieder’s conic bundle

In the proof of [Sch19, Theorem 1.5] for N = 4, Schreieder considers (up to birational
equivalence) the unirational conic bundle f : Y → P3 given by

Y = {x0x1g · y2
0 + x2x3 · y2

1 + y2
2 = 0} ⊂ P(O(−3) ⊕ O(−1) ⊕ O)
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and
g = t2G2 − x0x1x2x3 ,

where t ∈ C is transcendental and G ∈ Q[x0, x1, x2, x3] is a homogeneous polynomial
of degree 2 such that all monomials x2

i appear with a non-zero coefficient. Throughout
this chapter, we will set

G = x2
0 + x2

1 + x2
2 + x2

3 .

See also Remark 5.6 regarding the choice of G.

Let X be a smooth projective variety birational to Y . Let

α :=
(

x1
x0

,
x2
x0

,
x3
x0

)
∈ HBM

3 (U,Z/2)

where U = {x0x1x2x3 ̸= 0} ⊂ P3. We can represent α by the transversal intersection

C
(

x1
x0

)
∩ C

(
x2
x0

)
∩ C

(
x3
x0

)
=
{

x1
x0

,
x2
x0

,
x3
x0

∈ (0, ∞)
}

⊂ U(R)

on U . Note that the real manifold U(R) has 8 connected components, and this
3-cycle is one of them. Its closure is a solid tetrahedron and consists precisely of the
points in P3(R) given by four non-negative homogeneous coordinates. This closure
is an element of CBM

3 (P3) ⊗ Z/2 and will be our canonical representative for α. Its
boundary is the sum of four triangles, each supported on one of the divisors {xi = 0}.

As shown in [Sch19, Proposition 5.1], f∗α is an unramified cohomology class, i. e.
inside the direct limit H3(C(Y ),Z/2) ∼= HBM

5 (C(X),Z/2) it can be replaced by a
class in HBM

5 (U,Z/2) for a big open subset U ⊂ X. At the same time, this class is
non-zero in H3(C(Y ),Z/2) by [Sch19, Proposition 6.1]. Hence, the integral Hodge
conjecture for X fails in codimension 2 due to (5.1). As seen in section 5.2, our goal
is to decide whether f∗α is induced by a class in HBM

5 (X,Z/2) for some smooth
projective model X of Y .

In order to obtain a smooth projective model X, we want to resolve the singularities
of Y by blowing up P3 along components of the degeneracy divisor until we arrive at
a smooth projective variety S birational to P3 that admits a smooth conic bundle
X → S birational to Y .

The following smoothness criterion roughly says that smoothness is guaranteed once
the degeneracy divisor has simple normal crossings, each two intersecting components
“belong to different yi”, and there are no triple intersections:

Lemma 5.4. Let S be a smooth projective variety. For i ∈ {0, 1, 2}, let Li be a line
bundle on S and let ai be a global section of (L∨

i )⊗2. Then

X = {a0 · y2
0 + a1 · y2

1 + a2 · y2
2 = 0} ⊂ P(L0 ⊕ L1 ⊕ L2)
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defines a smooth conic bundle over S, provided that the following conditions are
satisfied:

(i) each Di := {ai = 0} ⊂ X is smooth (but not necessarily irreducible),
(ii) D0 ∪ D1 ∪ D2 = {a0a1a2 = 0} ⊂ X is a (reduced) simple normal crossing

divisor,
(iii) D0 ∩ D1 ∩ D2 = ∅.

Proof. By (iii), the morphism X → S is flat, and each fibre is a conic in P2. It
remains to verify that X is smooth. This can be checked étale-locally. By (ii),
there exist local coordinates x1, . . . , xn of S such that each ai is locally given by the
product of some subset of {x1, . . . , xn}, and these three subsets are pairwise disjoint.
We may also assume that L0 ⊕ L1 ⊕ L2 is trivial over these local coordinates. In
light of (i) and (iii), up to renumbering we are left with the following possibilities for
a local equation of X inside An × P2:

• y2
0 + y2

1 + y2
2 = 0

• x1y2
0 + y2

1 + y2
2 = 0

• x1y2
0 + x2y2

1 + y2
2 = 0

In each case, one can easily verify smoothness via the Jacobian criterion.

By [Sar82, Theorem 1.13], it is possible to find a model X satisfying the conditions of
Lemma 5.4. However, since we will later work with Borel–Moore homology classes on
X, we want to have more control over the resolution. Therefore, instead of refering
to the general results from [Sar82], we will explicitly construct a smooth model X

with suitable properties.

To this end, we additionally consider the conic bundle f ′ : Y ′ → P3 given by

Y ′ = {x0x1 · y2
0 + x2x3 · y2

1 + y2
2 = 0} ⊂ P(O(−1) ⊕ O(−1) ⊕ O) ,

which differs from Y only by omitting the factor g. This bundle can be easily
resolved by the blow-up ϕ′ : S′ → P3 along the two disjoint lines {x0 = x1 = 0} and
{x2 = x3 = 0}. This results in a smooth conic bundle f̃ ′ : X ′ → S′ and a birational
equivalence X ′ ∼

99K Y ′ such that the diagram of rational maps

X ′ ∼ //

f̃ ′

��

Y ′

f
��

S′ ϕ′
// P3

commutes. Let Z ′ := ϕ′−1({x0x1x2x3 = 0}) be the inverse image of the degeneracy
locus of Y ′. Clearly, Z ′ consists of the strict transforms of the divisors {xi = 0}
together with the two exceptional divisors over {x0 = x1 = 0} and {x2 = x3 = 0}.
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Note that Y and Y ′ are isomorphic over the divisor {x0x1x2x3 = 0} on which the
boundary of α is supported. Our aim is to construct a resolution X → S such
that the inverse image of {x0x1x2x3 = 0} in X contains a closed subset Z which
is, up to blow-ups of certain points, isomorphic to Z ′. Additionally, we want that
the boundaries of the respective pullbacks of α agree under this isomorphism. See
Proposition 5.8 for the precise statement.

In order to achieve this, a crucial observation is that the component {g = 0} of the
degeneracy divisor of Y does not meet α:

Lemma 5.5. If t ∈ C \ (R ∪ iR), then {g = 0} is disjoint from our canonical
representative α ∈ CBM

3 (P3) ⊗ Z/2.

Proof. As we have seen, α is supported on P3(R). Suppose that [x0 : x1 : x2 : x3]
with x0, x1, x2, x3 ∈ R is an R-point of {g = 0}. Then we have x2

0 + x2
1 + x2

2 + x2
3 > 0

and thus
t2 = x0x1x2x3

(x2
0 + x2

1 + x2
2 + x2

3)2 ∈ R ,

a contradiction.

Since C \ (R ∪ iR) is uncountable, the additional assumption on the transcendental
number t ∈ C is always satisfied up to a suitable automorphism of C fixing Q.

Remark 5.6. The proof of Lemma 5.5 generalizes to all positive definite quadratic
forms G.

Remark 5.7. The statement in Lemma 5.5 is true for certain t ∈ R as well. Indeed,
for t > 1

4 we obtain
t2(x2

0 + x2
1 + x2

2 + x2
3)2 > x0x1x2x3

for all (x0, x1, x2, x3) ∈ R4 \ {0} by the inequality between arithmetic and geometric
mean.

Proposition 5.8. There exists a morphism ϕ : S → P3, which is a composition of
blow-ups along smooth centres, and a smooth conic bundle f̃ : X → S together with a
birational equivalence X

∼
99K Y such that the following conditions are satisfied:

(1) The diagram of rational maps

X
∼ //

f̃
��

Y

f
��

S
ϕ // P3

commutes.
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(2) There exists a closed subscheme

Z ⊂ ϕ−1({x0x1x2x3 = 0})

and a morphism Z → Z ′ such that the conic bundle X restricted to Z is
the pullback of the conic bundle X ′ restricted to Z ′. The morphism Z → Z ′

corresponds to finitely many iterated blow-ups of the strict transforms of the
divisors {xi = 0} in points lying on the strict transforms of the lines {xi = xj =
0} for ij /∈ {01, 23} or on the exceptional divisors of previous such blow-ups.

(3) The class
α ∈ H3(C(P3),Z/2) ∼= H3(C(S),Z/2)

on S can be represented by a chain in CBM
3 (S)⊗Z/2 whose boundary is supported

on Z and does not meet the exceptional divisor of Z → Z ′. This boundary
agrees with the boundary of the canonical representative α ∈ CBM

3 (S′) ⊗ Z/2.

As a preparation for the proof of this proposition, let us first show the following
general lemma which allows to “absorb” any square inside a coefficient of a diagonal
conic bundle into the conic bundle itself.

Lemma 5.9. Let

X = {a0 · y2
0 + a1 · y2

1 + a2 · y2
2 = 0} ⊂ P(L0 ⊕ L1 ⊕ L2)

be a conic bundle as in Lemma 5.4, not necessarily smooth. Suppose that the divisor
D0 = {a0 = 0} has multiplicity ≥ 2 along a prime divisor E ⊂ S. Then X is
birational over S to a conic bundle where the multiplicity of D0 along E is reduced
by 2, and all other multiplicities remain unchanged.

Proof. Let b be the global section of L := OS(E) corresponding to E. Then we may
consider the conic bundle X̃ over S given by

X̃ =
{

a0
b2 · ỹ2

0 + a1 · y2
1 + a2 · y2

2 = 0
}

⊂ P((L0 ⊗ L) ⊕ L1 ⊕ L2) .

Note that a0
b2 defines a global section of ((L0 ⊗ L)∨)⊗2 = (L∨

0 )⊗2 ⊗ (L∨)⊗2 because a0
vanishes with multiplicity at least 2 along {b = 0}. We observe that X̃ has exactly
the stated multiplicities. Finally, one can check that ỹ0 7→ b · y0 induces a birational
equivalence X 99K X̃ over S.
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Proof of Proposition 5.8. Let Hi := {xi = 0} and D := {g = 0} be the components
of the degeneracy divisor of f : Y → P3. To simplify the notation, we denote their
strict transforms after each step still by the same letters. Note that the quartic surface
D is tangent to each of the four transversally intersecting planes H0, H1, H2, H3.

We first blow up the disjoint lines H0 ∩ H1 and H2 ∩ H3. This introduces two
exceptional divisors E01 and E23. Pulling back the conic bundle Y to this blowup,
we see that the coefficient in front of y2

0 vanishes with multiplicity 2 along E01.
Similarly, the coefficient in front of y2

1 vanishes with multiplicity 2 along E23. Hence,
by Lemma 5.9 we can erase E01 and E23 from the degeneracy divisor through a
birational modification of the conic bundle. From now on, we have H0 ∩ H1 = ∅ and
H2 ∩ H3 = ∅ for the strict transforms Hi.

Next we blow up the reduced subscheme associated to H0 ∩ D, i. e. the conic
{x0 = G = 0} (recall that D denotes the strict transform of our original divisor D

on P3). This introduces an exceptional divisor E0. Again E0 appears in the y2
0-part

of the degeneracy divisor of the pullback bundle with multiplicity 2, and can thus be
eliminated from the degeneracy divisor by a suitable birational transformation due
to Lemma 5.9. Now the divisors H0 and D intersect transversely along a smooth
curve. By blowing up H0 ∩ D, we get another exceptional divisor E′

0, which can be
excluded from the degeneracy divisor by the same argument as before. The strict
transforms H0 and D are now disjoint.

The analogous pair of blow-ups is then applied to H1 ∩ D, and after that to H2 ∩ D

and H3 ∩ D, resulting in 6 further blow-ups.

While the discussion for H1 ∩D is the same, the situation is slightly more complicated
for H2 ∩ D and H3 ∩ D. Indeed, the parts of the degeneracy divisor corresponding
to y2

0 and y2
1 will both contain the exceptional divisor E2 with multiplicity 1 each.

However, before the second blow-up of H2 ∩ D, we are in the situation that also H2
and E2 as well as D and E2 intersect transversely along the smooth curve H2 ∩ D.
Therefore, the blow-up of H0 ∩ D causes the coefficients in front of both y2

0 and y2
1

to vanish with multiplicity 2 along E′
2. Thus, we may again perform a birational

modification such that E′
2 is not part of the degeneracy divisor anymore. Although

E2 is still present in the degeneracy divisor, we may achieve by another birational
transformation that E2 appears with multiplicity 1 in the divisor associated to
the coefficient of y2

2, instead of y2
0 and y2

1. Since E2 does not intersect any of the
considered divisors anymore (except E′

2), it does not cause any issues regarding the
requirements of Lemma 5.4. The same argument applies to E3 and E′

3.

At this point, we have a birational model of Y with degeneracy divisor H0 + H1 +
H2 + H3 + D + E2 + E3 satisfying all conditions of Lemma 5.4 except possibly that
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D might still be singular. Since D is already disjoint from all other components
of the degeneracy locus, we can use the general algorithm from [Sar82] to blow up
subvarieties of D (or of the exceptional divisors introduced during this last step)
until we arrive at a smooth conic bundle f̃ : X → S.

Condition (1) is satisfied by construction. Condition (2) is also satisfied by taking Z

to be the union of the Hi with E01 and E23. Note that Hi is blown up in two distinct
non-real points when blowing up Hj ∩ D for ij /∈ {01, 23}. Finally, by Lemma 5.5
the class α is only affected by the first two blow-ups. These blow-ups are precisely
ϕ′ : S′ → P3. This shows condition (3).

5.4. Geometric study of the unramified cohomology class

Recall that S′ was defined as the blow-up of P3 along the two disjoint lines {x0 =
x1 = 0} and {x2 = x3 = 0}. Hence, we have S′ = ProjC[x̃0, x̃1, x̃2, x̃3, t01, t23] with
respect to the following trigrading:

deg x̃0 = deg x̃1 = (1, 0, 0) deg t01 = (−1, 0, 1)
deg x̃2 = deg x̃3 = (0, 1, 0) deg t23 = (0, −1, 1)

The blow-down map S′ → P3 corresponds to x0 7→ t01x̃0, x1 7→ t01x̃1, x2 7→ t23x̃2,
and x3 7→ t23x̃3. From this description, we can see that each of the four divisors
in S′ cut out by one x̃i is isomorphic to the Hirzebruch surface Σ1 (the total space
of the P1-bundle P(OP1 ⊕ OP1(1))), while the two divisors in S′ cut out by t01 and
t23, respectively, are isomorphic to the Hirzebruch surface Σ0 = P1 × P1. In total,
the six divisors intersect like the six sides of a cube (i. e. their intersection graph
is an octahedron), each of these intersections is a P1, and each non-empty triple
intersection is a single point, see also Figure 5.4.

The conic bundle X ′ → S′ can thus be regarded as the hypersurface of degree
(0, 0, 0, 2) cut out by

x̃0x̃1y2
0 + x̃2x̃3y2

1 + y2
2 = 0

inside the weighted projective space

P(OS′(−1, 0, 0) ⊕ OS′(0, −1, 0) ⊕ OS′) = ProjC[x̃0, x̃1, x̃2, x̃3, t01, t23, y0, y1, y2]

with the following multigrading:

deg x̃0 = deg x̃1 = (1, 0, 0, 0) deg t01 = (−1, 0, 1, 0)
deg x̃2 = deg x̃3 = (0, 1, 0, 0) deg t23 = (0, −1, 1, 0)

deg y0 = (−1, 0, 0, 1) deg y1 = (0, −1, 0, 1) deg y2 = (0, 0, 0, 1)
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Figure 5.4.: The six divisors on the blow-up S′

The class α ∈ HBM
3 (C(P3),Z/2) = HBM

3 (C(S′),Z/2), which was represented on P3

by the interior of a tetrahedron, can now be represented on S′ by the interior of
the cube bounded by the aforementioned six divisors in the real points of S′. In
equations, we have

α =
(

x̃1
x̃0

,
x̃3
x̃2

,
x̃2t23
x̃0t01

)
.

As a chain on S′, the boundary of α is the sum of six squares, each of them supported
on one of the six Hirzebruch surfaces.

Let W = f̃−1Z and W ′ = f̃ ′−1Z ′. In particular, there is a birational morphism
W → W ′ by condition (2) of Proposition 5.8. Let

β = β0 + β1 + β2 + β3 + β01 + β23

be the boundary of the canonical representative α ∈ CBM
3 (S′) ⊗ Z/2, where

βi ∈ CBM
2 ({x̃i = 0}) ⊗ Z/2 and βij ∈ CBM

2 ({tij = 0}) ⊗ Z/2 .

Let F ′
i ⊂ Z ′ be the fibre of the Hirzebruch surface {x̃i = 0} ∼= P(OP1 ⊕ OP1(1)) at

[1 : −1] ∈ P1. In other words, we have e. g. F ′
0 = {x̃0 = x̃2 + x̃3 = 0}. Note that F ′

i

is disjoint from βi.

On F ′
0, using x̃2 + x̃3 = 0 the conic bundle is given by

x̃2x̃3y2
1 + y2

2 = 0 ⇐⇒ (x̃2y1 + y2)(x̃3y1 + y2) = 0 .

Let K ′
0 := {x̃2y1 + y2} ⊂ f ′−1F ′

0. Similarly, we define the components

K ′
1 := {x̃2y1 + y2} ⊂ f ′−1F ′

1 ,

K ′
2 := {x̃0y0 + y2} ⊂ f ′−1F ′

2 ,

K ′
3 := {x̃0y0 + y2} ⊂ f ′−1F ′

3 .
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Let κ ∈ CBM
4 (W ′) ⊗ Z/2 be the cycle K ′

0 + K ′
1 + K ′

2 + K ′
3.

Since F ′
i is disjoint from the lines {x̃i = x̃j = 0}, we observe that W → W ′ is an

isomorphism above each F ′
i . Thus we obtain subvarieties Ki ⊂ W corresponding to

K ′
i ⊂ W ′.

Our goal is to prove:

Proposition 5.10. The cycle f ′∗β ∈ CBM
4 (W ′) ⊗ Z/2 can be written as

f ′∗β = ∂γ + κ

for some chain γ ∈ CBM
5 (W ′) ⊗ Z/2. Moreover, the support of γ is contained in the

open subset where W → W ′ is an isomorphism.

This will imply the following:

Corollary 5.11. Twice Schreieder’s non-algebraic class in H4(X,Z) can be repres-
ented by the algebraic cycle K0 + K1 + K2 + K3 on X.

Hence, the question whether Schreider’s example is 2-torsion leads to the question
whether κ ∈ H4(X,Z/2) is trivial. Note that this is indeed the case on X ′, since the
conic bundle above {x̃i = x̃j = 0} (with ij /∈ {01, 23}) is just a projective line with
multiplicity 2, and both K ′

i and K ′
j are homologous to this P1-bundle in {x̃i = 0}

and {x̃j = 0}, respectively. On X, however, the surfaces Ki and Kj on adjacent sides
of our cube differ in homology exactly by the reduced bundle above the exceptional
divisors arising from the point blow-ups on {x̃i = x̃j = 0}. The homology at these
exceptional divisors would thus indicate whether Schreieder’s counterexample to the
integral Hodge conjecture is of torsion type.

Proof of Corollary 5.11. By property (2) of Proposition 5.8 and the condition on
the support of γ in Proposition 5.10, we may also view γ as a chain on X. The same
applies to the cycle κ. Since γ is supported on the subvariety W ⊂ X of codimension 1,
we may replace f∗α by f∗α + γ in the direct limit HBM

5 (C(X),Z/2). By property (3)
of Proposition 5.8, the boundary of f∗α, viewed in CBM

4 (W ) ⊗ Z/2, corresponds
on W ′ to f ′∗β = ∂γ + κ ∈ CBM

4 (W ′) ⊗ Z/2. Therefore, we have ∂(f∗α + γ) = κ

on X. Since κ is supported in codimension 2, it follows that f∗α + γ (and thus
f∗α) is unramified. As the proof of [Sch23, Theorem 7.7] shows, the corresponding
element in Z4(X)[2] can be represented by µ, where µ ∈ CBM

4 (X) is chosen such
that ∂(f∗α + γ) = κ + 2µ in CBM

4 (X) (instead of CBM
4 (X) ⊗ Z/2). Therefore, 2µ

can be represented by κ.
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Proof of Proposition 5.10. Let us first see why f ′∗β vanishes in HBM
4 (F0W ′,Z/2),

i. e. f ′∗α is unramified. For i ∈ {0, 1}, using Corollary 5.3 we have

[f ′∗βi] =
(

x̃3
x̃2

,
x̃2t23
t01

)
=
(

x̃3
x̃2

(
x̃2y1
y2

)2
,
x̃2t23
t01

)
= 0 ∈ HBM

4 (F0{x̃i = 0},Z/2) (5.2)

because
x̃3
x̃2

(
x̃2y1
y2

)2
= x̃2x̃3

(
y1
y2

)2
= −1 .

Similarly, for i ∈ {2, 3} we have

[f ′∗βi] =
(

x̃1
x̃0

,
t23

x̃0t01

)
=
(

x̃1
x̃0

(
x̃0y0
y2

)2
,

t23
x̃0t01

)
= 0 ∈ HBM

4 (F0{x̃i = 0},Z/2) (5.3)

because
x̃1
x̃0

(
x̃0y0
y2

)2
= x̃0x̃1

(
y0
y2

)2
= −1 .

Finally, for ij ∈ {01, 23} we have

[f ′∗βij ] =
(

x̃1
x̃0

,
x̃3
x̃2

)
=
(

x̃1
x̃0

(
x̃0y0
y2

)2
,
x̃3
x̃2

)

=
(

x̃1
x̃0

(
x̃0y0
y2

)2
,
x̃3
x̃2

(
x̃2y1
y2

)2
)

= 0 ∈ HBM
4 (F0{tij = 0},Z/2) (5.4)

because

x̃1
x̃0

(
x̃0y0
y2

)2
+ x̃3

x̃2

(
x̃2y1
y2

)2
= x̃0x̃1

(
y0
y2

)2
+ x̃2x̃3

(
y1
y2

)2
= −1 ,

so Lemma 5.1 applies.

Due to the preceding computations in homology, on each of the six divisors (or
rather their pullbacks via f ′) there exists a 5-chain whose boundary agrees with the
corresponding part of f ′∗β on the Zariski open subset where all appearing rational
functions are invertible, i. e. when we remove the four other divisors intersecting the
considered one. In order to obtain a 5-chain on W ′ whose boundary agrees with
f ′∗β up to the additional components K ′

i, we need to check that these 5-chains glue
together along the P1 intersections of our divisors (or rather their pullbacks via f ′),
i. e. along the 12 edges of the cube.
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In the following, we will check this in detail for the three edges {x̃0 = t01 = 0},
{x̃2 = t01 = 0}, and {x0 = x2 = 0}. All other edges behave analogously to one of
these three edges.

We first need to discuss more precisely how the real square β0 ∈ CBM
2 ({x̃0 = 0})⊗Z/2

(and analogously β2 ∈ CBM
2 ({x̃2 = 0}) ⊗ Z/2) can be described. In homology, we

have
[β0] =

(
x̃3
x̃2

,
x̃2t23
t01

)
=
(

x̃3
x̃2

,
x̃3t23
t01

)
.

However, the 2-chains
C
(

x̃3
x̃2

)
∩ C

(
x̃2t23
t01

)
and

C
(

x̃3
x̃2

)
∩ C

(
x̃3t23
t01

)
describe β0 correctly only on the Zariski open subsets {x̃2 ̸= 0} or {x̃3 ̸= 0},
respectively. These 2-chains fully contain the divisors {x̃2 = 0} or {x̃3 = 0},
respectively, and are thus not supported on the R-points of S′. As we have seen in
section 5.2, β0 is the closure (in the analytic topology) of any of these two 2-chains
on {x̃2x̃3 ̸= 0}. This is different from both 2-chains because taking closures does not
commute with taking intersections.

We claim that
β0 = C

(
x̃3
x̃2

)
∩ C

((x̃2 + x̃3)t23
t01

)
.

Indeed, for a point in C (x̃3/x̃2) we can choose homogeneous coordinates with x̃2, x̃3 ∈
[0, ∞) and thus x̃2 + x̃3 > 0 (as x̃2 = x̃3 = 0 is impossible), so C ((x̃2 + x̃3)t23/t01)
agrees with C (x̃2t23/t01) and C (x̃3t23/t01) on {x̃2 ̸= 0} and {x̃3 ̸= 0}, respectively.

As our previous computation (5.2) in homology shows, f ′∗β0 ∈ CBM
4 ({x̃0 = 0}) ⊗Z/2

is due to Corollary 5.3 the boundary of

γ0 := Q
(

x̃3
x̃2

,
x̃2y1
y2

)
∩ C

((x̃2 + x̃3)t23
t01

)
.

A priori, γ0 is only defined on the Zariski open subset where the appearing rational
functions are invertible. By abuse of notation, we identify γ0 with its closure (in
the analytic topology) to obtain a 5-chain γ0 ∈ CBM

5 ({x̃0 = 0}) ⊗ Z/2. This might
add further summands to the boundary of γ0. These 4-chains (except for f ′∗β0) are
supported on the divisors {x̃2 = 0}, {x̃3 = 0}, {x̃2 + x̃3 = 0}, {y1 = 0}, {y2 = 0},
{t01 = 0}, and {t23 = 0} of our considered threefold {x̃0 = 0} ⊂ X ′.

Since the boundary of Q(u, v) contains the divisor {v = 0} with even multiplicity, the
boundary of γ0 along {x̃0 = y1 = 0} and {x̃0 = y2 = 0} vanishes. On {x̃0 = t01 = 0}
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and {x̃0 = t23 = 0}, we obtain the 4-chain

Q
(

x̃3
x̃2

,
x̃2y1
y2

)
.

On {x̃0 = x̃2 = 0} and {x̃0 = x̃3 = 0}, the restriction of γ0 is given by

C
(

t23
t01

)
.

On {x̃0 = x̃2 + x̃3 = 0}, we get

Q
(

−1,
x̃2y1
y2

)
.

As we can see from the definition of Q, this selects from the two components
{arg x̃2y1

y2
= 0} and {arg x̃2y1

y2
= π} the component K ′

0 = {x̃2y1 + y2 = 0}.

Similarly, we read off from (5.3) that the chain f ′∗β2 ∈ CBM
4 ({x̃2 = 0}) ⊗ Z/2 is (on

a non-empty Zariski open subset) the boundary of

γ2 := Q
(

x̃1
x̃0

,
x̃0y0
y2

)
∩ C

(
t23

(x̃0 + x̃1)t01

)
.

The boundary of γ2 ∈ CBM
5 ({x̃2 = 0}) ⊗ Z/2 along the edges {x̃2 = t01 = 0} and

{x̃2 = t23 = 0} is given by
Q
(

x̃1
x̃0

,
x̃0y0
y2

)
.

On {x̃2 = x̃0 = 0} and {x̃2 = x̃1 = 0}, the restriction of γ2 is

C
(

t23
t01

)
.

On {x̃2 = x̃0 + x̃1 = 0}, we get

Q
(

−1,
x̃0y0
y2

)
,

which is K ′
2. Again, there is no boundary along {x̃2 = y0 = 0} and {x̃2 = y2 = 0}.

Finally, in light of (5.4), the chain f ′∗β01 ∈ CBM
4 ({t01 = 0}) ⊗Z/2 is the boundary of

γ01 := Q
(

x̃1
x̃0

,
x̃0y0
y2

)
∩ C

(
x̃3
x̃2

)
+ C

(
x̃1
x̃0

(
x̃0y0
y2

)2
)

∩ Q
(

x̃3
x̃2

,
x̃2y1
y2

)
.

Its boundary along {t01 = x̃0 = 0} is

Q
(

x̃3
x̃2

,
x̃2y1
y2

)

78



and its boundary along {t01 = x̃2 = 0} is

Q
(

x̃1
x̃0

,
x̃0y0
y2

)
.

We see that the chains γ0, γ2, and γ01 have matching boundaries on the three
considered edges {x̃0 = t01 = 0}, {x̃2 = t01 = 0}, and {x0 = x2 = 0}, and no further
boundary components except K ′

i. Moreover, their common restriction C(t23/t01) onto
the edge {x̃0 = x̃2 = 0} does not contain the (non-real) points blown up by Z → Z ′.

Together with analogous computations for

γ1 := Q
(

x̃3
x̃2

,
x̃2y1
y2

)
∩ C

((x̃2 + x̃3)t23
t01

)
,

γ3 := Q
(

x̃1
x̃0

,
x̃0y0
y2

)
∩ C

(
t23

(x̃0 + x̃1)t01

)
,

γ23 := Q
(

x̃1
x̃0

,
x̃0y0
y2

)
∩ C

(
x̃3
x̃2

)
+ C

(
x̃1
x̃0

(
x̃0y0
y2

)2
)

∩ Q
(

x̃3
x̃2

,
x̃2y1
y2

)
we obtain the 5-chain

γ := γ0 + γ1 + γ2 + γ3 + γ01 + γ23 ∈ CBM
5 (W ′) ⊗ Z/2

with boundary f ′∗β + κ. Its support is disjoint from the points blown up by Z → Z ′.
This concludes the proof of Proposition 5.10.

Remark 5.12. At least on the four sides {x̃i = 0} of the cube, we can also describe
topologically how the 5-chain γ arises:

For example, let us consider the divisor {x̃0 = 0}. As we can see from the defining
equation, the conic bundle X ′ → S′ degenerates over {x̃0 = 0} into the union of
two transversely intersecting lines on {x̃2x̃3 ̸= 0} and into a single non-reduced line
on {x̃2x̃3 = 0}. Now β0 is just the real square described by x̃1/x̃0 ∈ [0, ∞] and
t23/t01 ∈ [0, ∞] (where the expression t23/t01 is well-defined only up to multiplication
with x̃1/x̃0). As β0 is simply connected, we can consistently pick one of the two lines
in the fibre at each point in β0. The idea is to “rotate” the segment [0, ∞] ⊂ P1(C)
(the one that describes the allowed values of x̃1/x̃0) around the origin until it comes
back to itself. Due to the monodromy of the fibres, we arrive at the other line, so
the boundary of the 5-chain swept out by this process is exactly the pullback f ′∗β0.

This phenomenon is similar to [AM72, § 2]. On the exceptional divisors {t01 = 0}
and {t23 = 0}, however, the conic bundle has smooth fibres in general and there does
not seem to be a similar description with monodromy.
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